File size: 6,463 Bytes
a784f59
 
 
5107c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
os.system("pip install --upgrade pip")
          
import re
import time
import io
from io import StringIO
from typing import Any, Dict, List
#Modules to Import
import openai
import streamlit as st
from langchain import LLMChain, OpenAI
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.chains import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
from langchain.docstore.document import Document
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import VectorStore
from langchain.vectorstores.faiss import FAISS
from pypdf import PdfReader

@st.cache_data
def parse_pdf (file: io.BytesIO)-> List[str]:
    pdf = PdfReader(file)
    output = []
    for page in pdf.pages:

        text = page.extract_text()
        #Merge hyphenated words
        text = re.sub(r"(\w+)-\n(\w+)", "\1\2", text)
        # Fix newlines in the middle of sentences 
        text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
        #Remove multiple newlines
        text = re.sub(r"\n\s*\n", "\n\n", text)
        
        output.append(text)
    return output

@st.cache_data
def text_to_docs(text: str) -> List [Document]:

    """Converts a string or list of strings to a list of Documents with metadata,"""

    if isinstance(text, str):
        #Take a single string as one page 
        text = [text]
    page_docs = [Document (page_content=page) for page in text]
    # Add page numbers as metadata 
    for i, doc in enumerate(page_docs): 

        doc.metadata["page"] = 1 + 1
    # Split pages into chunks 
    doc_chunks = []
    for doc in page_docs:
        text_splitter = RecursiveCharacterTextSplitter( 
            chunk_size=4000, 
            separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
            chunk_overlap=0,
        )
        chunks = text_splitter.split_text(doc.page_content)
        for i, chunk in enumerate(chunks):
            doc = Document(
                page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": 1}
            )
            # Add sources a metadata
            doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}" 
            doc_chunks.append(doc)
    return doc_chunks

 

uploaded_file = st.sidebar.file_uploader(":blue[Upload]", type=["pdf"])
if uploaded_file:

    doc = parse_pdf(uploaded_file)

    pages = text_to_docs(doc)
    # pages
    if pages:
        with st.expander('Show page contents', expanded=False):
            page_sel =st.number_input(
                label="selected page", min_value=1, max_value=len(pages), step=1
            )
            st.write(pages[page_sel-1])
            api = st.sidebar.text_input(
                "Open api key",
                type="password",
                placeholder="sk-",
                help="https://platform.openai.com/account/api-keys",
            )
            if api:
                embeddings = OpenAIEmbeddings(openai_api_key = api)
                # Indexing
                # Save in a Vector DB_
                with st.spinner("It's indexing. .."):

                    index = FAISS.from_documents(pages, embeddings)

                qa = RetrievalQA.from_chain_type(
                    llm = OpenAI(openai_api_key = api),
                    chain_type = "stuff",
                    retriever = index.as_retriever()
                )

                # our tool
                tools = [
                    Tool(
                        name="State of Union QA System",
                        func=qa.run,
                        description="Useful for when you need to answer questions about the aspects asked. Input may be a partial or fully formed question."
                    )
                ]
                prefix=""""Have a conversation with a human, answering the following questions as best you can based on the context and memory available. 
                        You have access to a single tool:"""
                suffix="""Begin!"
                {chat_history}
                Question: {input}
                {agent_scratchpad}"""
                prompt = ZeroShotAgent.create_prompt(
                    tools,
                    prefix=prefix,
                    suffix=suffix,
                    input_variables=["input", "chat_history", "agent_scratchpad"],
                )

                if "memory" not in st.session_state:
                    st.session_state.memory = ConversationBufferMemory(memory_key ="chat_history")

                #Chain
                # ZeroShotAgent

                llm_chain = LLMChain(
                    llm=OpenAI(
                    temperature=0, openai_api_key=api, model_name="gpt-3.5-turbo"
                    ),
                    prompt=prompt,
                )
                agent = ZeroShotAgent (llm_chain=llm_chain, tools=tools, verbose=True) 
                agent_chain = AgentExecutor.from_agent_and_tools(
                    agent=agent, tools=tools, verbose=True, memory=st.session_state.memory
                )
container = st.container()
with container:
    st.title("🤖 AI ChatBot")
                
# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])    
              
if query := st.chat_input("Hey yo !!! Wazzups!"):
       
    
    st.chat_message("user").markdown(query)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": query})
   
    # response=llm_chain.memory.chat_memory.add_user_message(prompt)
    with st.spinner("It's indexing. .."):
        response = agent_chain.run(query)
    # st.write(response)
     # #f"Echo: {prompt}" get_completion(template_string) #
    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        st.markdown(response)
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})
# with st.expander("History/Memory"):
# st.write(st.session_state.memory)