TeaRAG / app.py
thechaiexperiment's picture
Update app.py
462ad54 verified
raw
history blame
31.6 kB
import transformers
import pickle
import os
import re
import numpy as np
import torchvision
import nltk
import torch
import pandas as pd
import requests
import zipfile
import tempfile
from PyPDF2 import PdfReader
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification,
AutoModelForCausalLM,
pipeline,
Qwen2Tokenizer,
BartForConditionalGeneration
)
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from typing import List, Dict,Any,Tuple, Optional
from safetensors.numpy import load_file
from safetensors.torch import safe_open
from concurrent.futures import ThreadPoolExecutor
import asyncio
from functools import partial
nltk.download('punkt_tab')
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
models = {}
data = {}
class QueryRequest(BaseModel):
query: str
language_code: int = 1
class MedicalProfile(BaseModel):
conditions: str
daily_symptoms: str
count: int
class ChatQuery(BaseModel):
query: str
language_code: int = 1
#conversation_id: str
class ChatMessage(BaseModel):
role: str
content: str
timestamp: str
async def run_in_threadpool(func, *args, **kwargs):
return await asyncio.get_event_loop().run_in_executor(
None, partial(func, *args, **kwargs)
)
def init_nltk():
try:
nltk.download('punkt', quiet=True)
return True
except Exception as e:
print(f"Error initializing NLTK: {e}")
return False
def load_models():
try:
print("Loading models...")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device set to use {device}")
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2')
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
print("Models loaded successfully")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
try:
embeddings_path = 'embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
embeddings = {}
with safe_open(embeddings_path, framework="pt") as f:
keys = f.keys()
for key in keys:
try:
tensor = f.get_tensor(key)
if not isinstance(tensor, torch.Tensor):
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.")
embeddings[key] = tensor.numpy()
except Exception as key_error:
print(f"Failed to process key {key}: {key_error}")
if embeddings:
print("Embeddings successfully loaded.")
else:
print("No embeddings could be loaded. Please check the file format and content.")
return embeddings
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def normalize_key(key: str) -> str:
match = re.search(r'file_(\d+)', key)
if match:
return match.group(1)
return key
def load_recipes_embeddings() -> Optional[np.ndarray]:
try:
embeddings_path = 'recipes_embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
embeddings = load_file(embeddings_path)
if "embeddings" not in embeddings:
raise ValueError("Key 'embeddings' not found in the safetensors file.")
tensor = embeddings["embeddings"]
print(f"Successfully loaded embeddings.")
print(f"Shape of embeddings: {tensor.shape}")
print(f"Dtype of embeddings: {tensor.dtype}")
print(f"First few values of the first embedding: {tensor[0][:5]}")
return tensor
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
try:
print("Loading documents data...")
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
print(f"Error: Folder '{folder_path}' not found")
return False
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
if not html_files:
print(f"No HTML files found in folder '{folder_path}'")
return False
documents = []
for file_name in html_files:
file_path = os.path.join(folder_path, file_name)
try:
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator='\n').strip()
documents.append({"file_name": file_name, "content": text})
except Exception as e:
print(f"Error reading file {file_name}: {e}")
data['df'] = pd.DataFrame(documents)
if data['df'].empty:
print("No valid documents loaded.")
return False
print(f"Successfully loaded {len(data['df'])} document records.")
return True
except Exception as e:
print(f"Error loading docs: {e}")
return None
def load_data():
embeddings_success = load_embeddings()
documents_success = load_documents_data()
if not embeddings_success:
print("Warning: Failed to load embeddings, falling back to basic functionality")
if not documents_success:
print("Warning: Failed to load documents data, falling back to basic functionality")
return True
print("Initializing application...")
init_success = load_models() and load_data()
def translate_text(text, source_to_target='ar_to_en'):
try:
if source_to_target == 'ar_to_en':
tokenizer = models['ar_to_en_tokenizer']
model = models['ar_to_en_model']
else:
tokenizer = models['en_to_ar_tokenizer']
model = models['en_to_ar_model']
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error: {e}")
return text
def embed_query_text(query_text):
embedding = models['embedding_model']
query_embedding = embedding.encode([query_text])
return query_embedding
def query_embeddings(query_embedding, embeddings_data, n_results):
embeddings_data = load_embeddings()
if not embeddings_data:
print("No embeddings data available.")
return []
try:
doc_ids = list(embeddings_data.keys())
doc_embeddings = np.array(list(embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
def query_recipes_embeddings(query_embedding, embeddings_data, n_results):
embeddings_data = load_recipes_embeddings()
if embeddings_data is None:
print("No embeddings data available.")
return []
try:
if query_embedding.ndim == 1:
query_embedding = query_embedding.reshape(1, -1)
similarities = cosine_similarity(query_embedding, embeddings_data).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(index, similarities[index]) for index in top_indices]
except Exception as e:
print(f"Error in query_recipes_embeddings: {e}")
return []
def get_page_title(url):
try:
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.find('title')
return title.get_text() if title else "No title found"
else:
return None
except requests.exceptions.RequestException:
return None
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'):
texts = []
for doc_id in doc_ids:
file_path = os.path.join(folder_path, doc_id)
try:
if not os.path.exists(file_path):
print(f"Warning: Document file not found: {file_path}")
texts.append("")
continue
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
texts.append(text)
except Exception as e:
print(f"Error retrieving document {doc_id}: {e}")
texts.append("")
return texts
def retrieve_rec_texts(
document_indices,
folder_path='downloaded_articles/downloaded_articles',
metadata_path='recipes_metadata.xlsx'
):
try:
metadata_df = pd.read_excel(metadata_path)
if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns:
raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.")
metadata_df = metadata_df.sort_values(by="id").reset_index(drop=True)
if metadata_df.index.max() < max(document_indices):
raise ValueError("Some document indices exceed the range of metadata.")
document_texts = []
for idx in document_indices:
if idx >= len(metadata_df):
print(f"Warning: Index {idx} is out of range for metadata.")
continue
original_file_name = metadata_df.iloc[idx]["original_file_name"]
if not original_file_name:
print(f"Warning: No file name found for index {idx}")
continue
file_path = os.path.join(folder_path, original_file_name)
if os.path.exists(file_path):
with open(file_path, "r", encoding="utf-8") as f:
document_texts.append(f.read())
else:
print(f"Warning: File not found at {file_path}")
return document_texts
except Exception as e:
print(f"Error in retrieve_rec_texts: {e}")
return []
def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes_metadata.xlsx') -> Dict[int, Dict[str, str]]:
try:
metadata_df = pd.read_excel(metadata_path)
required_columns = {'id', 'original_file_name', 'url'}
if not required_columns.issubset(metadata_df.columns):
raise ValueError(f"Metadata file must contain columns: {required_columns}")
metadata_df['id'] = metadata_df['id'].astype(int)
filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)]
metadata_dict = {
int(row['id']): {
"original_file_name": row['original_file_name'],
"url": row['url']
}
for _, row in filtered_metadata.iterrows()
}
return metadata_dict
except Exception as e:
print(f"Error retrieving metadata: {e}")
return {}
def rerank_documents(query: str, document_ids: List[str], document_texts: List[str], cross_encoder_model) -> List[Tuple[float, str, str]]:
try:
# Batch process all documents at once
pairs = [(query, doc) for doc in document_texts]
scores = cross_encoder_model.predict(pairs, batch_size=8) # Increased batch size
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
return scored_documents
except Exception as e:
print(f"Error reranking documents: {e}")
return []
def extract_entities_batch(texts: List[str], biobert_tokenizer, biobert_model, batch_size: int = 8) -> List[List[str]]:
try:
all_entities = []
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i + batch_size]
# Process multiple texts in parallel
inputs = biobert_tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
with torch.no_grad(): # Disable gradient calculation
outputs = biobert_model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
for j, (input_ids, preds) in enumerate(zip(inputs.input_ids, predictions)):
tokens = biobert_tokenizer.convert_ids_to_tokens(input_ids)
entities = [tokens[k] for k in range(len(tokens)) if preds[k].item() != 0]
all_entities.append(entities)
return all_entities
except Exception as e:
print(f"Error in batch entity extraction: {e}")
return [[] for _ in texts]
def extract_relevant_portions(document_texts: List[str], query: str, biobert_tokenizer, biobert_model,
max_portions: int = 3, portion_size: int = 1) -> Dict[str, List[str]]:
try:
# Process query and all documents in one batch
all_texts = [query] + document_texts
all_entities = extract_entities_batch(all_texts, biobert_tokenizer, biobert_model)
query_entities = set(all_entities[0])
relevant_portions = {}
def process_document(doc_idx: int) -> Tuple[str, List[str]]:
doc_text = document_texts[doc_idx]
doc_entities = set(all_entities[doc_idx + 1]) # +1 because query was first
sentences = nltk.sent_tokenize(doc_text)
doc_relevant_portions = []
# Score sentences based on entity overlap
sentence_scores = []
for i, sentence in enumerate(sentences):
entity_overlap = len(query_entities.intersection(doc_entities))
sentence_scores.append((entity_overlap, i))
# Sort and select top sentences
sentence_scores.sort(reverse=True)
for _, sent_idx in sentence_scores[:max_portions]:
start_idx = max(0, sent_idx - portion_size // 2)
end_idx = min(len(sentences), sent_idx + portion_size // 2 + 1)
portion = " ".join(sentences[start_idx:end_idx])
doc_relevant_portions.append(portion)
return f"Document_{doc_idx}", doc_relevant_portions
# Process documents in parallel
with ThreadPoolExecutor(max_workers=4) as executor:
results = list(executor.map(lambda x: process_document(x), range(len(document_texts))))
relevant_portions = dict(results)
return relevant_portions
except Exception as e:
print(f"Error extracting relevant portions: {e}")
return {f"Document_{i}": [] for i in range(len(document_texts))}
def generate_answer(prompt: str, tokenizer_f, model_f, max_length: int = 860, temperature: float = 0.2) -> str:
try:
# Optimize input processing
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad(): # Disable gradient calculation
output_ids = model_f.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
pad_token_id=tokenizer_f.eos_token_id,
do_sample=False, # Use greedy decoding for faster generation
early_stopping=True
)
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
# Quick relevance check
if any(word in answer.lower() for word in prompt.lower().split()):
return answer
return "I apologize, but I cannot provide a relevant answer based on the given information."
except Exception as e:
print(f"Error generating answer: {e}")
return "I apologize, but I encountered an error while generating the answer."
def create_prompt(question: str, passage: str) -> str:
return f"""As a medical expert, answer the following question based only on the provided passage. Be concise and direct.
Passage: {passage}
Question: {question}
Answer:"""
def process_query_and_generate_answer(
query: str,
relevant_documents: List[Tuple[float, str, str]],
models: Dict,
max_portions: int = 3
) -> str:
try:
# Extract relevant portions from top documents
relevant_portions = extract_relevant_portions(
[doc[2] for doc in relevant_documents[:3]], # Use top 3 documents
query,
models['bio_tokenizer'],
models['bio_model'],
max_portions=max_portions
)
# Combine relevant portions
all_portions = []
for doc_portions in relevant_portions.values():
all_portions.extend(doc_portions)
# Remove duplicates while preserving order
unique_portions = list(dict.fromkeys(all_portions))
# Create context from unique portions
context = " ".join(unique_portions[:max_portions])
# Generate and return answer
prompt = create_prompt(query, context)
return generate_answer(
prompt,
models['llm_tokenizer'],
models['llm_model']
)
except Exception as e:
print(f"Error in query processing pipeline: {e}")
return "I apologize, but I encountered an error while processing your question."
def remove_answer_prefix(text):
prefix = "Answer:"
if prefix in text:
return text.split(prefix, 1)[-1].strip()
return text
def remove_incomplete_sentence(text):
if not text.endswith('.'):
last_period_index = text.rfind('.')
if last_period_index != -1:
return text[:last_period_index + 1].strip()
return text
def translate_ar_to_en(text):
try:
ar_to_en_tokenizer = models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
ar_to_en_model= models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
inputs = ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
translated_ids = ar_to_en_model.generate(
inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
return translated_text
except Exception as e:
print(f"Error during Arabic to English translation: {e}")
return None
def translate_en_to_ar(text):
try:
en_to_ar_tokenizer = models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
en_to_ar_model = models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
inputs = en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
translated_ids = en_to_ar_model.generate(
inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
return translated_text
except Exception as e:
print(f"Error during English to Arabic translation: {e}")
return None
@app.get("/")
async def root():
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
status = {
'status': 'healthy',
'models_loaded': bool(models),
'embeddings_loaded': bool(data.get('embeddings')),
'documents_loaded': not data.get('df', pd.DataFrame()).empty
}
return status
@app.post("/api/chat")
async def chat_endpoint(chat_query: ChatQuery):
try:
# Initialize response timing
start_time = asyncio.get_event_loop().time()
# Extract query and handle translation
query_text = chat_query.query
language_code = chat_query.language_code
if language_code == 0:
query_text = await run_in_threadpool(translate_ar_to_en, query_text)
# Embed query and load embeddings in parallel
query_embedding_task = run_in_threadpool(embed_query_text, query_text)
embeddings_data_task = run_in_threadpool(load_embeddings)
# Wait for both tasks to complete
query_embedding, embeddings_data = await asyncio.gather(
query_embedding_task,
embeddings_data_task
)
# Initial document retrieval
n_results = 5
folder_path = 'downloaded_articles/downloaded_articles'
# Get initial results and retrieve documents
initial_results = await run_in_threadpool(
query_embeddings,
query_embedding,
embeddings_data,
n_results
)
document_ids = [doc_id for doc_id, *_ in initial_results]
document_texts = await run_in_threadpool(
retrieve_document_texts,
document_ids,
folder_path
)
# Rerank documents
cross_encoder = models['cross_encoder']
scored_documents = await run_in_threadpool(
rerank_documents,
query_text,
document_ids,
document_texts,
cross_encoder
)
# Process documents and generate answer
async with asyncio.TaskGroup() as tg:
# Extract entities in parallel
entities_task = tg.create_task(
run_in_threadpool(
extract_entities_batch,
[query_text] + [doc[2] for doc in scored_documents[:3]],
models['bio_tokenizer'],
models['bio_model']
)
)
# Extract relevant portions
portions_task = tg.create_task(
run_in_threadpool(
extract_relevant_portions,
[doc[2] for doc in scored_documents[:3]],
query_text,
models['bio_tokenizer'],
models['bio_model']
)
)
entities = (await entities_task)[0] # First item is query entities
relevant_portions = await portions_task
# Flatten and process portions
flattened_portions = []
for doc_portions in relevant_portions.values():
flattened_portions.extend(doc_portions)
unique_selected_parts = list(dict.fromkeys(flattened_portions))
combined_parts = " ".join(unique_selected_parts)
# Enhance passage and create prompt
passage = enhance_passage_with_entities(combined_parts, entities)
prompt = create_prompt(query_text, passage)
# Generate answer
answer = await run_in_threadpool(
generate_answer,
prompt,
models['llm_tokenizer'],
models['llm_model']
)
# Process answer
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = await run_in_threadpool(remove_answer_prefix, answer_part)
final_answer = await run_in_threadpool(remove_incomplete_sentence, cleaned_answer)
# Handle translation if needed
if language_code == 0:
final_answer = await run_in_threadpool(translate_en_to_ar, final_answer)
# Calculate response time
end_time = asyncio.get_event_loop().time()
response_time = end_time - start_time
if final_answer:
print(f"Answer generated in {response_time:.2f} seconds")
print(final_answer)
return {
"response": f"I hope this answers your question: {final_answer}",
"success": True,
"response_time": response_time
}
else:
return {
"response": "Sorry, I can't help with that.",
"success": False,
"response_time": response_time
}
except Exception as e:
print(f"Error in chat endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/resources")
async def resources_endpoint(profile: MedicalProfile):
try:
query_text = profile.conditions + " " + profile.daily_symptoms
n_results = profile.count
print(f"Generated query text: {query_text}")
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
embeddings_data = load_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results)
if not initial_results:
raise ValueError("No relevant documents found.")
document_ids = [doc_id for doc_id, _ in initial_results]
file_path = 'finalcleaned_excel_file.xlsx'
df = pd.read_excel(file_path)
file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
resources = []
for file_name in document_ids:
original_url = file_name_to_url.get(file_name, None)
if original_url:
title = get_page_title(original_url) or "Unknown Title"
resources.append({"file_name": file_name, "title": title, "url": original_url})
else:
resources.append({"file_name": file_name, "title": "Unknown", "url": None})
document_texts = retrieve_document_texts(document_ids, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scores = [float(score) for score in scores]
for i, resource in enumerate(resources):
resource["score"] = scores[i] if i < len(scores) else 0.0
resources.sort(key=lambda x: x["score"], reverse=True)
output = [{"title": resource["title"], "url": resource["url"]} for resource in resources]
return output
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.post("/api/recipes")
async def recipes_endpoint(profile: MedicalProfile):
try:
recipe_query = (
f"Recipes and foods for: "
f"{profile.conditions} and experiencing {profile.daily_symptoms}"
)
query_text = recipe_query
print(f"Generated query text: {query_text}")
n_results = profile.count
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
embeddings_data = load_recipes_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results)
if not initial_results:
raise ValueError("No relevant recipes found.")
print("Initial results (document indices and similarities):")
print(initial_results)
document_indices = [doc_id for doc_id, _ in initial_results]
print("Document indices:", document_indices)
metadata_path = 'recipes_metadata.xlsx'
metadata = retrieve_metadata(document_indices, metadata_path=metadata_path)
print(f"Retrieved Metadata: {metadata}")
recipes = []
for item in metadata.values():
recipes.append({
"title": item["original_file_name"] if "original_file_name" in item else "Unknown Title",
"url": item["url"] if "url" in item else ""
})
print(recipes)
return recipes
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
if not init_success:
print("Warning: Application initialized with partial functionality")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)