TeaRAG / app.py
thechaiexperiment's picture
Update app.py
3b1c99a
raw
history blame
18 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Optional, Dict
import pickle
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from bs4 import BeautifulSoup
import os
import nltk
import torch
from transformers import (
AutoTokenizer,
BartForConditionalGeneration,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification
)
import pandas as pd
import time
# Initialize FastAPI app first
app = FastAPI()
class ArticleEmbeddingUnpickler(pickle.Unpickler):
"""Custom unpickler for article embeddings with enhanced persistence handling"""
def find_class(self, module: str, name: str) -> Any:
if module == 'numpy':
return getattr(np, name)
if module == 'sentence_transformers.SentenceTransformer':
from sentence_transformers import SentenceTransformer
return SentenceTransformer
return super().find_class(module, name)
def persistent_load(self, pid: Any) -> str:
"""Enhanced persistent ID handler with better encoding management"""
try:
# Handle different types of persistent IDs
if isinstance(pid, bytes):
return pid.decode('utf-8', errors='replace')
if isinstance(pid, (str, int, float)):
return str(pid)
return repr(pid)
except Exception as e:
print(f"Warning: Error in persistent_load: {str(e)}")
return repr(pid)
def safe_load_embeddings(file_path: str = 'embeddings.pkl') -> Dict[str, np.ndarray]:
"""Load embeddings with enhanced error handling and validation"""
try:
if not os.path.exists(file_path):
raise FileNotFoundError(f"Embeddings file not found at {file_path}")
with open(file_path, 'rb') as file:
unpickler = ArticleEmbeddingUnpickler(file)
embeddings_data = unpickler.load()
if not isinstance(embeddings_data, dict):
raise ValueError(f"Invalid data structure: expected dict, got {type(embeddings_data)}")
# Process and validate embeddings
valid_embeddings = {}
for key, value in embeddings_data.items():
try:
# Ensure key is a valid string
key_str = str(key).strip()
if not key_str:
continue
# Convert value to numpy array if needed
if isinstance(value, list):
value = np.array(value, dtype=np.float32)
elif isinstance(value, np.ndarray):
value = value.astype(np.float32)
else:
print(f"Skipping invalid embedding type for key {key_str}: {type(value)}")
continue
# Validate array dimensions and values
if value.ndim != 1:
print(f"Skipping invalid embedding shape for key {key_str}: {value.shape}")
continue
if np.isnan(value).any() or np.isinf(value).any():
print(f"Skipping embedding with invalid values for key {key_str}")
continue
valid_embeddings[key_str] = value
except Exception as e:
print(f"Error processing embedding for key {key}: {str(e)}")
continue
if not valid_embeddings:
raise ValueError("No valid embeddings found in file")
print(f"Successfully loaded {len(valid_embeddings)} valid embeddings")
return valid_embeddings
except Exception as e:
print(f"Error loading embeddings: {str(e)}")
raise
def safe_save_embeddings(embeddings_dict, file_path='embeddings.pkl'):
# Convert all keys to ASCII-safe strings
cleaned_embeddings = {
str(key).encode('ascii', errors='replace').decode('ascii'): value
for key, value in embeddings_dict.items()
}
with open(file_path, 'wb') as f:
pickle.dump(cleaned_embeddings, f, protocol=0)
# Models and data structures
class GlobalModels:
embedding_model = None
cross_encoder = None
semantic_model = None
tokenizer = None
model = None
tokenizer_f = None
model_f = None
ar_to_en_tokenizer = None
ar_to_en_model = None
en_to_ar_tokenizer = None
en_to_ar_model = None
embeddings_data = None
file_name_to_url = None
bio_tokenizer = None
bio_model = None
# Initialize global models
global_models = GlobalModels()
# Download NLTK data
nltk.download('punkt')
# Pydantic models for request validation
class QueryInput(BaseModel):
query_text: str
language_code: int # 0 for Arabic, 1 for English
query_type: str # "profile" or "question"
previous_qa: Optional[List[Dict[str, str]]] = None
class DocumentResponse(BaseModel):
title: str
url: str
text: str
score: float
# Modified startup event handler
@app.on_event("startup")
@app.on_event("startup")
async def load_models():
try:
print("Starting to load embeddings...")
embeddings_data = safe_load_embeddings()
print(f"Embeddings data type: {type(embeddings_data)}")
if embeddings_data:
print(f"Number of embeddings: {len(embeddings_data)}")
# Print sample of keys
print("Sample keys:", list(embeddings_data.keys())[:3])
# Load embedding models first
global_models.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Load embeddings data with new safe loader
embeddings_data = safe_load_embeddings()
if embeddings_data is None:
raise HTTPException(status_code=500, detail="Failed to load embeddings data")
global_models.embeddings_data = embeddings_data
# Load remaining models
global_models.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
global_models.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
# Load BART models
global_models.tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
global_models.model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
# Load Orca model
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
global_models.tokenizer_f = AutoTokenizer.from_pretrained(model_name)
global_models.model_f = AutoModelForCausalLM.from_pretrained(model_name)
# Load translation models
global_models.ar_to_en_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
global_models.ar_to_en_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
global_models.en_to_ar_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
global_models.en_to_ar_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
# Load Medical NER models
global_models.bio_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
global_models.bio_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
# Load URL mapping data
try:
df = pd.read_excel('finalcleaned_excel_file.xlsx')
global_models.file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
except Exception as e:
print(f"Error loading URL mapping data: {e}")
raise HTTPException(status_code=500, detail="Failed to load URL mapping data.")
print("All models loaded successfully")
except Exception as e:
print(f"Error during startup: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to initialize application: {str(e)}")
# Models and data structures to store loaded models
class GlobalModels:
embedding_model = None
cross_encoder = None
semantic_model = None
tokenizer = None
model = None
tokenizer_f = None
model_f = None
ar_to_en_tokenizer = None
ar_to_en_model = None
en_to_ar_tokenizer = None
en_to_ar_model = None
embeddings_data = None
file_name_to_url = None
bio_tokenizer = None
bio_model = None
global_models = GlobalModels()
# Download NLTK data
nltk.download('punkt')
# Pydantic models for request validation
class QueryInput(BaseModel):
query_text: str
language_code: int # 0 for Arabic, 1 for English
query_type: str # "profile" or "question"
previous_qa: Optional[List[Dict[str, str]]] = None
class DocumentResponse(BaseModel):
title: str
url: str
text: str
score: float
@app.on_event("startup")
async def load_models():
"""Initialize all models and data on startup"""
try:
# Load embedding models
global_models.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
global_models.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
global_models.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
# Load BART models
global_models.tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
global_models.model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
# Load Orca model
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
global_models.tokenizer_f = AutoTokenizer.from_pretrained(model_name)
global_models.model_f = AutoModelForCausalLM.from_pretrained(model_name)
# Load translation models
global_models.ar_to_en_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
global_models.ar_to_en_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
global_models.en_to_ar_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
global_models.en_to_ar_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
# Load Medical NER models
global_models.bio_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
global_models.bio_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
# Load embeddings data with better error handling
try:
with open('embeddings.pkl', 'rb') as file:
global_models.embeddings_data = pickle.load(file)
except (FileNotFoundError, pickle.UnpicklingError) as e:
print(f"Error loading embeddings data: {e}")
raise HTTPException(status_code=500, detail="Failed to load embeddings data.")
# Load URL mapping data
try:
df = pd.read_excel('finalcleaned_excel_file.xlsx')
global_models.file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
except Exception as e:
print(f"Error loading URL mapping data: {e}")
raise HTTPException(status_code=500, detail="Failed to load URL mapping data.")
except Exception as e:
print(f"Error loading models: {e}")
raise HTTPException(status_code=500, detail="Failed to load models.")
def translate_ar_to_en(text):
try:
inputs = global_models.ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
translated_ids = global_models.ar_to_en_model.generate(
inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = global_models.ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
return translated_text
except Exception as e:
print(f"Error during Arabic to English translation: {e}")
return None
def translate_en_to_ar(text):
try:
inputs = global_models.en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
translated_ids = global_models.en_to_ar_model.generate(
inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = global_models.en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
return translated_text
except Exception as e:
print(f"Error during English to Arabic translation: {e}")
return None
def process_query(query_text, language_code):
if language_code == 0:
return translate_ar_to_en(query_text)
return query_text
def embed_query_text(query_text):
return global_models.embedding_model.encode([query_text])
def query_embeddings(query_embedding, n_results=5):
doc_ids = list(global_models.embeddings_data.keys())
doc_embeddings = np.array(list(global_models.embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles'):
texts = []
for doc_id in doc_ids:
file_path = os.path.join(folder_path, doc_id)
try:
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
texts.append(text)
except FileNotFoundError:
texts.append("")
return texts
def extract_entities(text):
inputs = global_models.bio_tokenizer(text, return_tensors="pt")
outputs = global_models.bio_model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
tokens = global_models.bio_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
return [tokens[i] for i in range(len(tokens)) if predictions[0][i].item() != 0]
def create_prompt(question, passage):
return f"""
As a medical expert, you are required to answer the following question based only on the provided passage.
Do not include any information not present in the passage. Your response should directly reflect the content
of the passage. Maintain accuracy and relevance to the provided information.
Passage: {passage}
Question: {question}
Answer:
"""
def generate_answer(prompt, max_length=860, temperature=0.2):
inputs = global_models.tokenizer_f(prompt, return_tensors="pt", truncation=True)
start_time = time.time()
output_ids = global_models.model_f.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
pad_token_id=global_models.tokenizer_f.eos_token_id
)
duration = time.time() - start_time
answer = global_models.tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
return answer, duration
def clean_answer(answer):
answer_part = answer.split("Answer:")[-1].strip()
if not answer_part.endswith('.'):
last_period_index = answer_part.rfind('.')
if last_period_index != -1:
answer_part = answer_part[:last_period_index + 1].strip()
return answer_part
@app.post("/retrieve_documents")
async def retrieve_documents(input_data: QueryInput):
try:
# Process query
processed_query = process_query(input_data.query_text, input_data.language_code)
query_embedding = embed_query_text(processed_query)
results = query_embeddings(query_embedding)
# Get document texts and rerank
document_ids = [doc_id for doc_id, _ in results]
document_texts = retrieve_document_texts(document_ids)
scores = global_models.cross_encoder.predict([(processed_query, doc) for doc in document_texts])
# Prepare response
documents = []
for score, doc_id, text in zip(scores, document_ids, document_texts):
url = global_models.file_name_to_url.get(doc_id, "")
documents.append({
"title": doc_id,
"url": url,
"text": text if input_data.language_code == 1 else translate_en_to_ar(text),
"score": float(score)
})
return {"status": "success", "documents": documents}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/get_answer")
async def get_answer(input_data: QueryInput):
try:
# Process query
processed_query = process_query(input_data.query_text, input_data.language_code)
# Get relevant documents
query_embedding = embed_query_text(processed_query)
results = query_embeddings(query_embedding)
document_ids = [doc_id for doc_id, _ in results]
document_texts = retrieve_document_texts(document_ids)
# Extract entities and create context
entities = extract_entities(processed_query)
context = " ".join(document_texts)
enhanced_context = f"{context}\n\nEntities: {', '.join(entities)}"
# Generate answer
prompt = create_prompt(processed_query, enhanced_context)
answer, duration = generate_answer(prompt)
final_answer = clean_answer(answer)
# Translate if needed
if input_data.language_code == 0:
final_answer = translate_en_to_ar(final_answer)
return {
"status": "success",
"answer": final_answer,
"processing_time": duration
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Server is running"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)