Spaces:
Sleeping
Sleeping
File size: 11,869 Bytes
eee7a65 35e1586 95a7e5a 35e1586 eee7a65 31bad44 35e1586 31bad44 35e1586 eee7a65 35e1586 ce93ad2 2d991dc ce93ad2 95a7e5a 554b5f1 31bad44 554b5f1 95a7e5a 31bad44 eee7a65 31bad44 3b1c99a 31bad44 f377404 31bad44 eee7a65 31bad44 eee7a65 31bad44 eee7a65 31bad44 eee7a65 3b1c99a 31bad44 eee7a65 6398daa 134d152 7becdb7 b2bdaba 134d152 b2bdaba 134d152 b2bdaba 134d152 b2bdaba 134d152 7becdb7 134d152 f377404 2d991dc 7becdb7 134d152 f377404 eee7a65 f377404 eee7a65 f377404 eee7a65 35e1586 f377404 31bad44 f377404 31bad44 f377404 31bad44 f377404 31bad44 f377404 31bad44 f377404 31bad44 f377404 31bad44 95a7e5a 31bad44 f377404 95a7e5a 35e1586 95a7e5a 31bad44 eee7a65 95a7e5a 35e1586 f377404 95a7e5a 35e1586 f377404 35e1586 f377404 95a7e5a f377404 95a7e5a f377404 95a7e5a f377404 95a7e5a f377404 95a7e5a f377404 95a7e5a f377404 95a7e5a 35e1586 eee7a65 f377404 95a7e5a 35e1586 95a7e5a 31bad44 eee7a65 31bad44 f377404 eee7a65 95a7e5a 31bad44 95a7e5a f342c38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import os
import pickle
import numpy as np
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification,
AutoModelForCausalLM,
pipeline
)
from sentence_transformers import SentenceTransformer, CrossEncoder
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
import nltk
import torch
import pandas as pd
import subprocess
from typing import Dict, Optional
import codecs
from huggingface_hub import hf_hub_download
# Initialize FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variables for models and data
models = {}
data = {}
class QueryRequest(BaseModel):
query: str
language_code: int = 0
def init_nltk():
"""Initialize NLTK resources"""
try:
nltk.download('punkt', quiet=True)
return True
except Exception as e:
print(f"Error initializing NLTK: {e}")
return False
def load_models():
"""Initialize all required models"""
try:
print("Loading models...")
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device set to use {device}")
# Embedding models
models['embedding'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
# Translation models
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
# NER model
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
# LLM model
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
print("Models loaded successfully")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
"""Load embeddings from local file or HuggingFace Hub"""
try:
import pickle
import numpy as np
import os
from typing import Dict, Optional
embeddings_path = 'embeddings.pkl'
if not os.path.exists(embeddings_path):
from huggingface_hub import hf_hub_download
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', ''),
filename="embeddings.pkl",
repo_type="space"
)
class ASCIIUnpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == "__main__":
module = "numpy"
return super().find_class(module, name)
with open(embeddings_path, 'rb') as f:
unpickler = ASCIIUnpickler(f)
embeddings = unpickler.load()
if not isinstance(embeddings, dict):
return None
return {k: np.array(v, dtype=np.float32) for k, v in embeddings.items()}
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def load_documents_data():
"""Load document data with error handling"""
try:
print("Loading documents data...")
docs_path = 'finalcleaned_excel_file.xlsx'
if not os.path.exists(docs_path):
print(f"Error: {docs_path} not found")
return False
data['df'] = pd.read_excel(docs_path)
print(f"Successfully loaded {len(data['df'])} document records")
return True
except Exception as e:
print(f"Error loading documents data: {e}")
data['df'] = pd.DataFrame()
return False
def load_data():
"""Load all required data"""
embeddings_success = load_embeddings()
documents_success = load_documents_data()
if not embeddings_success:
print("Warning: Failed to load embeddings, falling back to basic functionality")
if not documents_success:
print("Warning: Failed to load documents data, falling back to basic functionality")
return True
def translate_text(text, source_to_target='ar_to_en'):
"""Translate text between Arabic and English"""
try:
if source_to_target == 'ar_to_en':
tokenizer = models['ar_to_en_tokenizer']
model = models['ar_to_en_model']
else:
tokenizer = models['en_to_ar_tokenizer']
model = models['en_to_ar_model']
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error: {e}")
return text
def extract_entities(text):
"""Extract medical entities from text using NER"""
try:
results = models['ner_pipeline'](text)
return list({result['word'] for result in results if result['entity'].startswith("B-")})
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def generate_answer(query, context, max_length=860, temperature=0.2):
"""Generate answer using LLM"""
try:
prompt = f"""
As a medical expert, please provide a clear and accurate answer to the following question based solely on the provided context.
Context: {context}
Question: {query}
Answer: Let me help you with accurate information from reliable medical sources."""
inputs = models['llm_tokenizer'](prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = models['llm_model'].generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
do_sample=True,
top_p=0.9,
pad_token_id=models['llm_tokenizer'].eos_token_id
)
response = models['llm_tokenizer'].decode(outputs[0], skip_special_tokens=True)
if "Answer:" in response:
response = response.split("Answer:")[-1].strip()
sentences = nltk.sent_tokenize(response)
if sentences:
return " ".join(sentences)
return response
except Exception as e:
print(f"Error generating answer: {e}")
return "I apologize, but I'm unable to generate an answer at this time. Please try again later."
def query_embeddings(query_embedding, n_results=5):
"""Find relevant documents using embedding similarity"""
if not data['embeddings']:
return []
try:
doc_ids = list(data['embeddings'].keys())
doc_embeddings = np.array(list(data['embeddings'].values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
def retrieve_document_text(doc_id):
"""Retrieve document text from HTML file"""
try:
file_path = os.path.join('downloaded_articles', doc_id)
if not os.path.exists(file_path):
print(f"Warning: Document file not found: {file_path}")
return ""
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
return soup.get_text(separator=' ', strip=True)
except Exception as e:
print(f"Error retrieving document {doc_id}: {e}")
return ""
def rerank_documents(query, doc_texts):
"""Rerank documents using cross-encoder"""
try:
pairs = [(query, doc) for doc in doc_texts]
scores = models['cross_encoder'].predict(pairs)
return scores
except Exception as e:
print(f"Error reranking documents: {e}")
return np.zeros(len(doc_texts))
@app.get("/health")
async def health_check():
"""Health check endpoint"""
status = {
'status': 'healthy',
'models_loaded': bool(models),
'embeddings_loaded': bool(data.get('embeddings')),
'documents_loaded': not data.get('df', pd.DataFrame()).empty
}
return status
@app.post("/api/query")
async def process_query(request: QueryRequest):
"""Main query processing endpoint"""
try:
query_text = request.query
language_code = request.language_code
if not models or not data.get('embeddings'):
raise HTTPException(
status_code=503,
detail="The system is currently initializing. Please try again in a few minutes."
)
try:
if language_code == 0:
query_text = translate_text(query_text, 'ar_to_en')
query_embedding = models['embedding'].encode([query_text])
relevant_docs = query_embeddings(query_embedding)
if not relevant_docs:
return {
'answer': 'No relevant information found. Please try a different query.',
'success': True
}
doc_texts = [retrieve_document_text(doc_id) for doc_id, _ in relevant_docs]
doc_texts = [text for text in doc_texts if text.strip()]
if not doc_texts:
return {
'answer': 'Unable to retrieve relevant documents. Please try again.',
'success': True
}
rerank_scores = rerank_documents(query_text, doc_texts)
ranked_texts = [text for _, text in sorted(zip(rerank_scores, doc_texts), reverse=True)]
context = " ".join(ranked_texts[:3])
answer = generate_answer(query_text, context)
if language_code == 0:
answer = translate_text(answer, 'en_to_ar')
return {
'answer': answer,
'success': True
}
except Exception as e:
print(f"Error processing query: {e}")
raise HTTPException(
status_code=500,
detail="An error occurred while processing your query"
)
except Exception as e:
print(f"Error in process_query: {e}")
raise HTTPException(
status_code=500,
detail=str(e)
)
# Initialize application
print("Initializing application...")
init_success = init_nltk() and load_models() and load_data()
if not init_success:
print("Warning: Application initialized with partial functionality")
# For running locally
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|