Omnieraser / diffusers /tests /pipelines /flux /test_pipeline_flux.py
theSure's picture
Upload 2037 files
a49cc2f verified
import gc
import unittest
import numpy as np
import pytest
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel
from diffusers.utils.testing_utils import (
nightly,
numpy_cosine_similarity_distance,
require_big_gpu_with_torch_cuda,
slow,
torch_device,
)
from ..test_pipelines_common import (
FluxIPAdapterTesterMixin,
PipelineTesterMixin,
PyramidAttentionBroadcastTesterMixin,
check_qkv_fusion_matches_attn_procs_length,
check_qkv_fusion_processors_exist,
)
class FluxPipelineFastTests(
unittest.TestCase, PipelineTesterMixin, FluxIPAdapterTesterMixin, PyramidAttentionBroadcastTesterMixin
):
pipeline_class = FluxPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
batch_params = frozenset(["prompt"])
# there is no xformers processor for Flux
test_xformers_attention = False
test_layerwise_casting = True
def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
torch.manual_seed(0)
transformer = FluxTransformer2DModel(
patch_size=1,
in_channels=4,
num_layers=num_layers,
num_single_layers=num_single_layers,
attention_head_dim=16,
num_attention_heads=2,
joint_attention_dim=32,
pooled_projection_dim=32,
axes_dims_rope=[4, 4, 8],
)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
torch.manual_seed(0)
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=1,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"transformer": transformer,
"vae": vae,
"image_encoder": None,
"feature_extractor": None,
}
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 8,
"width": 8,
"max_sequence_length": 48,
"output_type": "np",
}
return inputs
def test_flux_different_prompts(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_same_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = "a different prompt"
output_different_prompts = pipe(**inputs).images[0]
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
# Outputs should be different here
# For some reasons, they don't show large differences
assert max_diff > 1e-6
def test_flux_prompt_embeds(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_with_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs.pop("prompt")
(prompt_embeds, pooled_prompt_embeds, text_ids) = pipe.encode_prompt(
prompt,
prompt_2=None,
device=torch_device,
max_sequence_length=inputs["max_sequence_length"],
)
output_with_embeds = pipe(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
**inputs,
).images[0]
max_diff = np.abs(output_with_prompt - output_with_embeds).max()
assert max_diff < 1e-4
def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
original_image_slice = image[0, -3:, -3:, -1]
# TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
# to the pipeline level.
pipe.transformer.fuse_qkv_projections()
assert check_qkv_fusion_processors_exist(
pipe.transformer
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
assert check_qkv_fusion_matches_attn_procs_length(
pipe.transformer, pipe.transformer.original_attn_processors
), "Something wrong with the attention processors concerning the fused QKV projections."
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice_fused = image[0, -3:, -3:, -1]
pipe.transformer.unfuse_qkv_projections()
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice_disabled = image[0, -3:, -3:, -1]
assert np.allclose(
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3
), "Fusion of QKV projections shouldn't affect the outputs."
assert np.allclose(
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
assert np.allclose(
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
), "Original outputs should match when fused QKV projections are disabled."
def test_flux_image_output_shape(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
height_width_pairs = [(32, 32), (72, 57)]
for height, width in height_width_pairs:
expected_height = height - height % (pipe.vae_scale_factor * 2)
expected_width = width - width % (pipe.vae_scale_factor * 2)
inputs.update({"height": height, "width": width})
image = pipe(**inputs).images[0]
output_height, output_width, _ = image.shape
assert (output_height, output_width) == (expected_height, expected_width)
def test_flux_true_cfg(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
inputs.pop("generator")
no_true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
inputs["negative_prompt"] = "bad quality"
inputs["true_cfg_scale"] = 2.0
true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
assert not np.allclose(no_true_cfg_out, true_cfg_out)
@nightly
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
class FluxPipelineSlowTests(unittest.TestCase):
pipeline_class = FluxPipeline
repo_id = "black-forest-labs/FLUX.1-schnell"
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, seed=0):
generator = torch.Generator(device="cpu").manual_seed(seed)
prompt_embeds = torch.load(
hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
).to(torch_device)
pooled_prompt_embeds = torch.load(
hf_hub_download(
repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
)
).to(torch_device)
return {
"prompt_embeds": prompt_embeds,
"pooled_prompt_embeds": pooled_prompt_embeds,
"num_inference_steps": 2,
"guidance_scale": 0.0,
"max_sequence_length": 256,
"output_type": "np",
"generator": generator,
}
def test_flux_inference(self):
pipe = self.pipeline_class.from_pretrained(
self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
).to(torch_device)
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images[0]
image_slice = image[0, :10, :10]
expected_slice = np.array(
[
0.3242,
0.3203,
0.3164,
0.3164,
0.3125,
0.3125,
0.3281,
0.3242,
0.3203,
0.3301,
0.3262,
0.3242,
0.3281,
0.3242,
0.3203,
0.3262,
0.3262,
0.3164,
0.3262,
0.3281,
0.3184,
0.3281,
0.3281,
0.3203,
0.3281,
0.3281,
0.3164,
0.3320,
0.3320,
0.3203,
],
dtype=np.float32,
)
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
assert max_diff < 1e-4
@slow
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
class FluxIPAdapterPipelineSlowTests(unittest.TestCase):
pipeline_class = FluxPipeline
repo_id = "black-forest-labs/FLUX.1-dev"
image_encoder_pretrained_model_name_or_path = "openai/clip-vit-large-patch14"
weight_name = "ip_adapter.safetensors"
ip_adapter_repo_id = "XLabs-AI/flux-ip-adapter"
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
prompt_embeds = torch.load(
hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
)
pooled_prompt_embeds = torch.load(
hf_hub_download(
repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
)
)
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
ip_adapter_image = np.zeros((1024, 1024, 3), dtype=np.uint8)
return {
"prompt_embeds": prompt_embeds,
"pooled_prompt_embeds": pooled_prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_pooled_prompt_embeds": negative_pooled_prompt_embeds,
"ip_adapter_image": ip_adapter_image,
"num_inference_steps": 2,
"guidance_scale": 3.5,
"true_cfg_scale": 4.0,
"max_sequence_length": 256,
"output_type": "np",
"generator": generator,
}
def test_flux_ip_adapter_inference(self):
pipe = self.pipeline_class.from_pretrained(
self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
)
pipe.load_ip_adapter(
self.ip_adapter_repo_id,
weight_name=self.weight_name,
image_encoder_pretrained_model_name_or_path=self.image_encoder_pretrained_model_name_or_path,
)
pipe.set_ip_adapter_scale(1.0)
pipe.enable_model_cpu_offload()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images[0]
image_slice = image[0, :10, :10]
expected_slice = np.array(
[
0.1855,
0.1680,
0.1406,
0.1953,
0.1699,
0.1465,
0.2012,
0.1738,
0.1484,
0.2051,
0.1797,
0.1523,
0.2012,
0.1719,
0.1445,
0.2070,
0.1777,
0.1465,
0.2090,
0.1836,
0.1484,
0.2129,
0.1875,
0.1523,
0.2090,
0.1816,
0.1484,
0.2110,
0.1836,
0.1543,
],
dtype=np.float32,
)
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
assert max_diff < 1e-4, f"{image_slice} != {expected_slice}"