import gc import unittest import numpy as np import pytest import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel from diffusers.utils.testing_utils import ( nightly, numpy_cosine_similarity_distance, require_big_gpu_with_torch_cuda, slow, torch_device, ) from ..test_pipelines_common import ( FluxIPAdapterTesterMixin, PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, check_qkv_fusion_matches_attn_procs_length, check_qkv_fusion_processors_exist, ) class FluxPipelineFastTests( unittest.TestCase, PipelineTesterMixin, FluxIPAdapterTesterMixin, PyramidAttentionBroadcastTesterMixin ): pipeline_class = FluxPipeline params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) batch_params = frozenset(["prompt"]) # there is no xformers processor for Flux test_xformers_attention = False test_layerwise_casting = True def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1): torch.manual_seed(0) transformer = FluxTransformer2DModel( patch_size=1, in_channels=4, num_layers=num_layers, num_single_layers=num_single_layers, attention_head_dim=16, num_attention_heads=2, joint_attention_dim=32, pooled_projection_dim=32, axes_dims_rope=[4, 4, 8], ) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) torch.manual_seed(0) text_encoder = CLIPTextModel(clip_text_encoder_config) torch.manual_seed(0) text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) vae = AutoencoderKL( sample_size=32, in_channels=3, out_channels=3, block_out_channels=(4,), layers_per_block=1, latent_channels=1, norm_num_groups=1, use_quant_conv=False, use_post_quant_conv=False, shift_factor=0.0609, scaling_factor=1.5035, ) scheduler = FlowMatchEulerDiscreteScheduler() return { "scheduler": scheduler, "text_encoder": text_encoder, "text_encoder_2": text_encoder_2, "tokenizer": tokenizer, "tokenizer_2": tokenizer_2, "transformer": transformer, "vae": vae, "image_encoder": None, "feature_extractor": None, } def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "height": 8, "width": 8, "max_sequence_length": 48, "output_type": "np", } return inputs def test_flux_different_prompts(self): pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) inputs = self.get_dummy_inputs(torch_device) output_same_prompt = pipe(**inputs).images[0] inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = "a different prompt" output_different_prompts = pipe(**inputs).images[0] max_diff = np.abs(output_same_prompt - output_different_prompts).max() # Outputs should be different here # For some reasons, they don't show large differences assert max_diff > 1e-6 def test_flux_prompt_embeds(self): pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) inputs = self.get_dummy_inputs(torch_device) output_with_prompt = pipe(**inputs).images[0] inputs = self.get_dummy_inputs(torch_device) prompt = inputs.pop("prompt") (prompt_embeds, pooled_prompt_embeds, text_ids) = pipe.encode_prompt( prompt, prompt_2=None, device=torch_device, max_sequence_length=inputs["max_sequence_length"], ) output_with_embeds = pipe( prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, **inputs, ).images[0] max_diff = np.abs(output_with_prompt - output_with_embeds).max() assert max_diff < 1e-4 def test_fused_qkv_projections(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images original_image_slice = image[0, -3:, -3:, -1] # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added # to the pipeline level. pipe.transformer.fuse_qkv_projections() assert check_qkv_fusion_processors_exist( pipe.transformer ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." assert check_qkv_fusion_matches_attn_procs_length( pipe.transformer, pipe.transformer.original_attn_processors ), "Something wrong with the attention processors concerning the fused QKV projections." inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice_fused = image[0, -3:, -3:, -1] pipe.transformer.unfuse_qkv_projections() inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice_disabled = image[0, -3:, -3:, -1] assert np.allclose( original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 ), "Fusion of QKV projections shouldn't affect the outputs." assert np.allclose( image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." assert np.allclose( original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 ), "Original outputs should match when fused QKV projections are disabled." def test_flux_image_output_shape(self): pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) inputs = self.get_dummy_inputs(torch_device) height_width_pairs = [(32, 32), (72, 57)] for height, width in height_width_pairs: expected_height = height - height % (pipe.vae_scale_factor * 2) expected_width = width - width % (pipe.vae_scale_factor * 2) inputs.update({"height": height, "width": width}) image = pipe(**inputs).images[0] output_height, output_width, _ = image.shape assert (output_height, output_width) == (expected_height, expected_width) def test_flux_true_cfg(self): pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) inputs = self.get_dummy_inputs(torch_device) inputs.pop("generator") no_true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0] inputs["negative_prompt"] = "bad quality" inputs["true_cfg_scale"] = 2.0 true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0] assert not np.allclose(no_true_cfg_out, true_cfg_out) @nightly @require_big_gpu_with_torch_cuda @pytest.mark.big_gpu_with_torch_cuda class FluxPipelineSlowTests(unittest.TestCase): pipeline_class = FluxPipeline repo_id = "black-forest-labs/FLUX.1-schnell" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, seed=0): generator = torch.Generator(device="cpu").manual_seed(seed) prompt_embeds = torch.load( hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt") ).to(torch_device) pooled_prompt_embeds = torch.load( hf_hub_download( repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt" ) ).to(torch_device) return { "prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, "num_inference_steps": 2, "guidance_scale": 0.0, "max_sequence_length": 256, "output_type": "np", "generator": generator, } def test_flux_inference(self): pipe = self.pipeline_class.from_pretrained( self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None ).to(torch_device) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images[0] image_slice = image[0, :10, :10] expected_slice = np.array( [ 0.3242, 0.3203, 0.3164, 0.3164, 0.3125, 0.3125, 0.3281, 0.3242, 0.3203, 0.3301, 0.3262, 0.3242, 0.3281, 0.3242, 0.3203, 0.3262, 0.3262, 0.3164, 0.3262, 0.3281, 0.3184, 0.3281, 0.3281, 0.3203, 0.3281, 0.3281, 0.3164, 0.3320, 0.3320, 0.3203, ], dtype=np.float32, ) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4 @slow @require_big_gpu_with_torch_cuda @pytest.mark.big_gpu_with_torch_cuda class FluxIPAdapterPipelineSlowTests(unittest.TestCase): pipeline_class = FluxPipeline repo_id = "black-forest-labs/FLUX.1-dev" image_encoder_pretrained_model_name_or_path = "openai/clip-vit-large-patch14" weight_name = "ip_adapter.safetensors" ip_adapter_repo_id = "XLabs-AI/flux-ip-adapter" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) prompt_embeds = torch.load( hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt") ) pooled_prompt_embeds = torch.load( hf_hub_download( repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt" ) ) negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) ip_adapter_image = np.zeros((1024, 1024, 3), dtype=np.uint8) return { "prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "negative_pooled_prompt_embeds": negative_pooled_prompt_embeds, "ip_adapter_image": ip_adapter_image, "num_inference_steps": 2, "guidance_scale": 3.5, "true_cfg_scale": 4.0, "max_sequence_length": 256, "output_type": "np", "generator": generator, } def test_flux_ip_adapter_inference(self): pipe = self.pipeline_class.from_pretrained( self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None ) pipe.load_ip_adapter( self.ip_adapter_repo_id, weight_name=self.weight_name, image_encoder_pretrained_model_name_or_path=self.image_encoder_pretrained_model_name_or_path, ) pipe.set_ip_adapter_scale(1.0) pipe.enable_model_cpu_offload() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images[0] image_slice = image[0, :10, :10] expected_slice = np.array( [ 0.1855, 0.1680, 0.1406, 0.1953, 0.1699, 0.1465, 0.2012, 0.1738, 0.1484, 0.2051, 0.1797, 0.1523, 0.2012, 0.1719, 0.1445, 0.2070, 0.1777, 0.1465, 0.2090, 0.1836, 0.1484, 0.2129, 0.1875, 0.1523, 0.2090, 0.1816, 0.1484, 0.2110, 0.1836, 0.1543, ], dtype=np.float32, ) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4, f"{image_slice} != {expected_slice}"