Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import torch | |
| from diffusers import AutoencoderKLLTXVideo | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| torch_device, | |
| ) | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| enable_full_determinism() | |
| class AutoencoderKLLTXVideo090Tests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = AutoencoderKLLTXVideo | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def get_autoencoder_kl_ltx_video_config(self): | |
| return { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "latent_channels": 8, | |
| "block_out_channels": (8, 8, 8, 8), | |
| "decoder_block_out_channels": (8, 8, 8, 8), | |
| "layers_per_block": (1, 1, 1, 1, 1), | |
| "decoder_layers_per_block": (1, 1, 1, 1, 1), | |
| "spatio_temporal_scaling": (True, True, False, False), | |
| "decoder_spatio_temporal_scaling": (True, True, False, False), | |
| "decoder_inject_noise": (False, False, False, False, False), | |
| "upsample_residual": (False, False, False, False), | |
| "upsample_factor": (1, 1, 1, 1), | |
| "timestep_conditioning": False, | |
| "patch_size": 1, | |
| "patch_size_t": 1, | |
| "encoder_causal": True, | |
| "decoder_causal": False, | |
| } | |
| def dummy_input(self): | |
| batch_size = 2 | |
| num_frames = 9 | |
| num_channels = 3 | |
| sizes = (16, 16) | |
| image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
| return {"sample": image} | |
| def input_shape(self): | |
| return (3, 9, 16, 16) | |
| def output_shape(self): | |
| return (3, 9, 16, 16) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = self.get_autoencoder_kl_ltx_video_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_gradient_checkpointing_is_applied(self): | |
| expected_set = { | |
| "LTXVideoEncoder3d", | |
| "LTXVideoDecoder3d", | |
| "LTXVideoDownBlock3D", | |
| "LTXVideoMidBlock3d", | |
| "LTXVideoUpBlock3d", | |
| } | |
| super().test_gradient_checkpointing_is_applied(expected_set=expected_set) | |
| def test_outputs_equivalence(self): | |
| pass | |
| def test_forward_with_norm_groups(self): | |
| pass | |
| class AutoencoderKLLTXVideo091Tests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = AutoencoderKLLTXVideo | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def get_autoencoder_kl_ltx_video_config(self): | |
| return { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "latent_channels": 8, | |
| "block_out_channels": (8, 8, 8, 8), | |
| "decoder_block_out_channels": (16, 32, 64), | |
| "layers_per_block": (1, 1, 1, 1), | |
| "decoder_layers_per_block": (1, 1, 1, 1), | |
| "spatio_temporal_scaling": (True, True, True, False), | |
| "decoder_spatio_temporal_scaling": (True, True, True), | |
| "decoder_inject_noise": (True, True, True, False), | |
| "upsample_residual": (True, True, True), | |
| "upsample_factor": (2, 2, 2), | |
| "timestep_conditioning": True, | |
| "patch_size": 1, | |
| "patch_size_t": 1, | |
| "encoder_causal": True, | |
| "decoder_causal": False, | |
| } | |
| def dummy_input(self): | |
| batch_size = 2 | |
| num_frames = 9 | |
| num_channels = 3 | |
| sizes = (16, 16) | |
| image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
| timestep = torch.tensor([0.05] * batch_size, device=torch_device) | |
| return {"sample": image, "temb": timestep} | |
| def input_shape(self): | |
| return (3, 9, 16, 16) | |
| def output_shape(self): | |
| return (3, 9, 16, 16) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = self.get_autoencoder_kl_ltx_video_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_gradient_checkpointing_is_applied(self): | |
| expected_set = { | |
| "LTXVideoEncoder3d", | |
| "LTXVideoDecoder3d", | |
| "LTXVideoDownBlock3D", | |
| "LTXVideoMidBlock3d", | |
| "LTXVideoUpBlock3d", | |
| } | |
| super().test_gradient_checkpointing_is_applied(expected_set=expected_set) | |
| def test_outputs_equivalence(self): | |
| pass | |
| def test_forward_with_norm_groups(self): | |
| pass | |
| def test_enable_disable_tiling(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict).to(torch_device) | |
| inputs_dict.update({"return_dict": False}) | |
| torch.manual_seed(0) | |
| output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| torch.manual_seed(0) | |
| model.enable_tiling() | |
| output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertLess( | |
| (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), | |
| 0.5, | |
| "VAE tiling should not affect the inference results", | |
| ) | |
| torch.manual_seed(0) | |
| model.disable_tiling() | |
| output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertEqual( | |
| output_without_tiling.detach().cpu().numpy().all(), | |
| output_without_tiling_2.detach().cpu().numpy().all(), | |
| "Without tiling outputs should match with the outputs when tiling is manually disabled.", | |
| ) | |