# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import AutoencoderKLLTXVideo from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class AutoencoderKLLTXVideo090Tests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderKLLTXVideo main_input_name = "sample" base_precision = 1e-2 def get_autoencoder_kl_ltx_video_config(self): return { "in_channels": 3, "out_channels": 3, "latent_channels": 8, "block_out_channels": (8, 8, 8, 8), "decoder_block_out_channels": (8, 8, 8, 8), "layers_per_block": (1, 1, 1, 1, 1), "decoder_layers_per_block": (1, 1, 1, 1, 1), "spatio_temporal_scaling": (True, True, False, False), "decoder_spatio_temporal_scaling": (True, True, False, False), "decoder_inject_noise": (False, False, False, False, False), "upsample_residual": (False, False, False, False), "upsample_factor": (1, 1, 1, 1), "timestep_conditioning": False, "patch_size": 1, "patch_size_t": 1, "encoder_causal": True, "decoder_causal": False, } @property def dummy_input(self): batch_size = 2 num_frames = 9 num_channels = 3 sizes = (16, 16) image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 9, 16, 16) @property def output_shape(self): return (3, 9, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = self.get_autoencoder_kl_ltx_video_config() inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = { "LTXVideoEncoder3d", "LTXVideoDecoder3d", "LTXVideoDownBlock3D", "LTXVideoMidBlock3d", "LTXVideoUpBlock3d", } super().test_gradient_checkpointing_is_applied(expected_set=expected_set) @unittest.skip("Unsupported test.") def test_outputs_equivalence(self): pass @unittest.skip("AutoencoderKLLTXVideo does not support `norm_num_groups` because it does not use GroupNorm.") def test_forward_with_norm_groups(self): pass class AutoencoderKLLTXVideo091Tests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderKLLTXVideo main_input_name = "sample" base_precision = 1e-2 def get_autoencoder_kl_ltx_video_config(self): return { "in_channels": 3, "out_channels": 3, "latent_channels": 8, "block_out_channels": (8, 8, 8, 8), "decoder_block_out_channels": (16, 32, 64), "layers_per_block": (1, 1, 1, 1), "decoder_layers_per_block": (1, 1, 1, 1), "spatio_temporal_scaling": (True, True, True, False), "decoder_spatio_temporal_scaling": (True, True, True), "decoder_inject_noise": (True, True, True, False), "upsample_residual": (True, True, True), "upsample_factor": (2, 2, 2), "timestep_conditioning": True, "patch_size": 1, "patch_size_t": 1, "encoder_causal": True, "decoder_causal": False, } @property def dummy_input(self): batch_size = 2 num_frames = 9 num_channels = 3 sizes = (16, 16) image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) timestep = torch.tensor([0.05] * batch_size, device=torch_device) return {"sample": image, "temb": timestep} @property def input_shape(self): return (3, 9, 16, 16) @property def output_shape(self): return (3, 9, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = self.get_autoencoder_kl_ltx_video_config() inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = { "LTXVideoEncoder3d", "LTXVideoDecoder3d", "LTXVideoDownBlock3D", "LTXVideoMidBlock3d", "LTXVideoUpBlock3d", } super().test_gradient_checkpointing_is_applied(expected_set=expected_set) @unittest.skip("Unsupported test.") def test_outputs_equivalence(self): pass @unittest.skip("AutoencoderKLLTXVideo does not support `norm_num_groups` because it does not use GroupNorm.") def test_forward_with_norm_groups(self): pass def test_enable_disable_tiling(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() torch.manual_seed(0) model = self.model_class(**init_dict).to(torch_device) inputs_dict.update({"return_dict": False}) torch.manual_seed(0) output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] torch.manual_seed(0) model.enable_tiling() output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertLess( (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), 0.5, "VAE tiling should not affect the inference results", ) torch.manual_seed(0) model.disable_tiling() output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertEqual( output_without_tiling.detach().cpu().numpy().all(), output_without_tiling_2.detach().cpu().numpy().all(), "Without tiling outputs should match with the outputs when tiling is manually disabled.", )