Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import sys | |
import unittest | |
import torch | |
from transformers import Gemma2Model, GemmaTokenizer | |
from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel | |
from diffusers.utils.testing_utils import floats_tensor, require_peft_backend | |
sys.path.append(".") | |
from utils import PeftLoraLoaderMixinTests # noqa: E402 | |
class SanaLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): | |
pipeline_class = SanaPipeline | |
scheduler_cls = FlowMatchEulerDiscreteScheduler(shift=7.0) | |
scheduler_kwargs = {} | |
scheduler_classes = [FlowMatchEulerDiscreteScheduler] | |
transformer_kwargs = { | |
"patch_size": 1, | |
"in_channels": 4, | |
"out_channels": 4, | |
"num_layers": 1, | |
"num_attention_heads": 2, | |
"attention_head_dim": 4, | |
"num_cross_attention_heads": 2, | |
"cross_attention_head_dim": 4, | |
"cross_attention_dim": 8, | |
"caption_channels": 8, | |
"sample_size": 32, | |
} | |
transformer_cls = SanaTransformer2DModel | |
vae_kwargs = { | |
"in_channels": 3, | |
"latent_channels": 4, | |
"attention_head_dim": 2, | |
"encoder_block_types": ( | |
"ResBlock", | |
"EfficientViTBlock", | |
), | |
"decoder_block_types": ( | |
"ResBlock", | |
"EfficientViTBlock", | |
), | |
"encoder_block_out_channels": (8, 8), | |
"decoder_block_out_channels": (8, 8), | |
"encoder_qkv_multiscales": ((), (5,)), | |
"decoder_qkv_multiscales": ((), (5,)), | |
"encoder_layers_per_block": (1, 1), | |
"decoder_layers_per_block": [1, 1], | |
"downsample_block_type": "conv", | |
"upsample_block_type": "interpolate", | |
"decoder_norm_types": "rms_norm", | |
"decoder_act_fns": "silu", | |
"scaling_factor": 0.41407, | |
} | |
vae_cls = AutoencoderDC | |
tokenizer_cls, tokenizer_id = GemmaTokenizer, "hf-internal-testing/dummy-gemma" | |
text_encoder_cls, text_encoder_id = Gemma2Model, "hf-internal-testing/dummy-gemma-for-diffusers" | |
def output_shape(self): | |
return (1, 32, 32, 3) | |
def get_dummy_inputs(self, with_generator=True): | |
batch_size = 1 | |
sequence_length = 16 | |
num_channels = 4 | |
sizes = (32, 32) | |
generator = torch.manual_seed(0) | |
noise = floats_tensor((batch_size, num_channels) + sizes) | |
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
pipeline_inputs = { | |
"prompt": "", | |
"negative_prompt": "", | |
"num_inference_steps": 4, | |
"guidance_scale": 4.5, | |
"height": 32, | |
"width": 32, | |
"max_sequence_length": sequence_length, | |
"output_type": "np", | |
"complex_human_instruction": None, | |
} | |
if with_generator: | |
pipeline_inputs.update({"generator": generator}) | |
return noise, input_ids, pipeline_inputs | |
def test_modify_padding_mode(self): | |
pass | |
def test_simple_inference_with_text_denoiser_block_scale(self): | |
pass | |
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): | |
pass | |
def test_simple_inference_with_partial_text_lora(self): | |
pass | |
def test_simple_inference_with_text_lora(self): | |
pass | |
def test_simple_inference_with_text_lora_and_scale(self): | |
pass | |
def test_simple_inference_with_text_lora_fused(self): | |
pass | |
def test_simple_inference_with_text_lora_save_load(self): | |
pass | |