File size: 4,658 Bytes
a49cc2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest

import torch
from transformers import Gemma2Model, GemmaTokenizer

from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel
from diffusers.utils.testing_utils import floats_tensor, require_peft_backend


sys.path.append(".")

from utils import PeftLoraLoaderMixinTests  # noqa: E402


@require_peft_backend
class SanaLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
    pipeline_class = SanaPipeline
    scheduler_cls = FlowMatchEulerDiscreteScheduler(shift=7.0)
    scheduler_kwargs = {}
    scheduler_classes = [FlowMatchEulerDiscreteScheduler]
    transformer_kwargs = {
        "patch_size": 1,
        "in_channels": 4,
        "out_channels": 4,
        "num_layers": 1,
        "num_attention_heads": 2,
        "attention_head_dim": 4,
        "num_cross_attention_heads": 2,
        "cross_attention_head_dim": 4,
        "cross_attention_dim": 8,
        "caption_channels": 8,
        "sample_size": 32,
    }
    transformer_cls = SanaTransformer2DModel
    vae_kwargs = {
        "in_channels": 3,
        "latent_channels": 4,
        "attention_head_dim": 2,
        "encoder_block_types": (
            "ResBlock",
            "EfficientViTBlock",
        ),
        "decoder_block_types": (
            "ResBlock",
            "EfficientViTBlock",
        ),
        "encoder_block_out_channels": (8, 8),
        "decoder_block_out_channels": (8, 8),
        "encoder_qkv_multiscales": ((), (5,)),
        "decoder_qkv_multiscales": ((), (5,)),
        "encoder_layers_per_block": (1, 1),
        "decoder_layers_per_block": [1, 1],
        "downsample_block_type": "conv",
        "upsample_block_type": "interpolate",
        "decoder_norm_types": "rms_norm",
        "decoder_act_fns": "silu",
        "scaling_factor": 0.41407,
    }
    vae_cls = AutoencoderDC
    tokenizer_cls, tokenizer_id = GemmaTokenizer, "hf-internal-testing/dummy-gemma"
    text_encoder_cls, text_encoder_id = Gemma2Model, "hf-internal-testing/dummy-gemma-for-diffusers"

    @property
    def output_shape(self):
        return (1, 32, 32, 3)

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 16
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "",
            "negative_prompt": "",
            "num_inference_steps": 4,
            "guidance_scale": 4.5,
            "height": 32,
            "width": 32,
            "max_sequence_length": sequence_length,
            "output_type": "np",
            "complex_human_instruction": None,
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

    @unittest.skip("Not supported in SANA.")
    def test_modify_padding_mode(self):
        pass

    @unittest.skip("Not supported in SANA.")
    def test_simple_inference_with_text_denoiser_block_scale(self):
        pass

    @unittest.skip("Not supported in SANA.")
    def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in SANA.")
    def test_simple_inference_with_partial_text_lora(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in SANA.")
    def test_simple_inference_with_text_lora(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in SANA.")
    def test_simple_inference_with_text_lora_and_scale(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in SANA.")
    def test_simple_inference_with_text_lora_fused(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in SANA.")
    def test_simple_inference_with_text_lora_save_load(self):
        pass