Spaces:
Running
on
Zero
Running
on
Zero
import io | |
import os | |
import shutil | |
import uuid | |
import torch | |
import random | |
import spaces | |
import gradio as gr | |
import numpy as np | |
from PIL import Image, ImageCms | |
import torch | |
from diffusers import FluxTransformer2DModel | |
from diffusers.utils import load_image | |
from pipeline_flux_control_removal import FluxControlRemovalPipeline | |
pipe = None | |
torch.set_grad_enabled(False) | |
image_examples = [ | |
[ | |
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png", | |
"example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png" | |
], | |
[ | |
"example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png", | |
"example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png" | |
], | |
[ | |
"example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png", | |
"example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png" | |
], | |
[ | |
"example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png", | |
"example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png" | |
], | |
[ | |
"example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png", | |
"example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png" | |
], | |
[ | |
"example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png", | |
"example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png" | |
] | |
] | |
base_model_path = 'black-forest-labs/FLUX.1-dev' | |
lora_path = 'theSure/Omnieraser' | |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16) | |
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%")) | |
with torch.no_grad(): | |
initial_input_channels = transformer.config.in_channels | |
new_linear = torch.nn.Linear( | |
transformer.x_embedder.in_features*4, | |
transformer.x_embedder.out_features, | |
bias=transformer.x_embedder.bias is not None, | |
dtype=transformer.dtype, | |
device=transformer.device, | |
) | |
new_linear.weight.zero_() | |
new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight) | |
if transformer.x_embedder.bias is not None: | |
new_linear.bias.copy_(transformer.x_embedder.bias) | |
transformer.x_embedder = new_linear | |
transformer.register_to_config(in_channels=initial_input_channels*4) | |
pipe = FluxControlRemovalPipeline.from_pretrained( | |
base_model_path, | |
transformer=transformer, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe.transformer.to(torch.bfloat16) | |
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%")) | |
gr.Info(str(f"Inject LoRA: {lora_path}")) | |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors") | |
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%")) | |
def set_seed(seed): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
def predict( | |
input_image, | |
uploaded_mask, | |
prompt, | |
ddim_steps, | |
seed, | |
scale, | |
): | |
gr.Info(str(f"Set seed = {seed}")) | |
size1, size2 = input_image.convert("RGB").size | |
icc_profile = input_image.info.get('icc_profile') | |
if icc_profile: | |
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB...")) | |
srgb_profile = ImageCms.createProfile("sRGB") | |
io_handle = io.BytesIO(icc_profile) | |
src_profile = ImageCms.ImageCmsProfile(io_handle) | |
input_image = ImageCms.profileToProfile(input_image, src_profile, srgb_profile) | |
input_image.info.pop('icc_profile', None) | |
if size1 < size2: | |
input_image = input_image.convert("RGB").resize((1024, int(size2 / size1 * 1024))) | |
else: | |
input_image = input_image.convert("RGB").resize((int(size1 / size2 * 1024), 1024)) | |
img = np.array(input_image.convert("RGB")) | |
W = int(np.shape(img)[1] - np.shape(img)[1] % 16) | |
H = int(np.shape(img)[0] - np.shape(img)[0] % 16) | |
input_image = input_image.resize((H, W)) | |
uploaded_mask = uploaded_mask.resize((H, W)) | |
if seed == -1: | |
seed = random.randint(1, 2147483647) | |
set_seed(random.randint(1, 2147483647)) | |
else: | |
set_seed(seed) | |
base_model_path = 'black-forest-labs/FLUX.1-dev' | |
lora_path = 'theSure/Omnieraser' | |
result = pipe( | |
prompt=prompt, | |
control_image=input_image.convert("RGB"), | |
control_mask=uploaded_mask.convert("RGB"), | |
width=W, | |
height=H, | |
num_inference_steps=ddim_steps, | |
generator=torch.Generator("cuda").manual_seed(seed), | |
guidance_scale=scale, | |
max_sequence_length=512, | |
).images[0] | |
mask_np = np.array(uploaded_mask.convert("RGB")) | |
red = np.array(input_image).astype("float") * 1 | |
red[:, :, 0] = 180.0 | |
red[:, :, 2] = 0 | |
red[:, :, 1] = 0 | |
result_m = np.array(input_image) | |
result_m = Image.fromarray( | |
( | |
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red | |
).astype("uint8") | |
) | |
dict_res = [input_image, uploaded_mask, result_m, result] | |
dict_out = [result] | |
image_path = None | |
mask_path = None | |
return dict_out, dict_res | |
def infer( | |
input_image, | |
uploaded_mask, | |
ddim_steps, | |
seed, | |
scale, | |
removal_prompt, | |
): | |
return predict(input_image, | |
uploaded_mask, | |
removal_prompt, | |
ddim_steps, | |
seed, | |
scale, | |
) | |
def process_example(image_paths, mask_paths): | |
global image_path, mask_path | |
image = Image.open(image_paths).convert("RGB") | |
mask = Image.open(mask_paths).convert("L") | |
black_background = Image.new("RGB", image.size, (0, 0, 0)) | |
masked_image = Image.composite(black_background, image, mask) | |
image_path = image_paths | |
mask_path = mask_paths | |
return masked_image | |
custom_css = """ | |
.contain { max-width: 1200px !important; } | |
.custom-image { | |
border: 2px dashed #7e22ce !important; | |
border-radius: 12px !important; | |
transition: all 0.3s ease !important; | |
} | |
.custom-image:hover { | |
border-color: #9333ea !important; | |
box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important; | |
} | |
.btn-primary { | |
background: linear-gradient(45deg, #7e22ce, #9333ea) !important; | |
border: none !important; | |
color: white !important; | |
border-radius: 8px !important; | |
} | |
#inline-examples { | |
border: 1px solid #e2e8f0 !important; | |
border-radius: 12px !important; | |
padding: 16px !important; | |
margin-top: 8px !important; | |
} | |
#inline-examples .thumbnail { | |
border-radius: 8px !important; | |
transition: transform 0.2s ease !important; | |
} | |
#inline-examples .thumbnail:hover { | |
transform: scale(1.05); | |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); | |
} | |
.example-title h3 { | |
margin: 0 0 12px 0 !important; | |
color: #475569 !important; | |
font-size: 1.1em !important; | |
display: flex !important; | |
align-items: center !important; | |
} | |
.example-title h3::before { | |
content: "📚"; | |
margin-right: 8px; | |
font-size: 1.2em; | |
} | |
.row { align-items: stretch !important; } | |
.panel { height: 100%; } | |
""" | |
with gr.Blocks( | |
css=custom_css, | |
theme=gr.themes.Soft( | |
primary_hue="purple", | |
secondary_hue="purple", | |
font=[gr.themes.GoogleFont('Inter'), 'sans-serif'] | |
), | |
title="Omnieraser" | |
) as demo: | |
ddim_steps = gr.Slider(visible=False, value=28) | |
scale = gr.Slider(visible=False, value=3.5) | |
seed = gr.Slider(visible=False, value=-1) | |
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.") | |
gr.Markdown(""" | |
<div align="center"> | |
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">🪄 Omnieraser</h1> | |
</div> | |
""") | |
gr.Markdown(""" | |
This is the demo of the paper "OmniEraser: Remove Objects and Their Effects in Images with Paired Video-Frame Data". | |
To use this application: | |
1. Upload an image. | |
2. Upload a pre-defined mask (Unfortunatey, you cannot sketch mask here due to the compatibility issues with zerogpu, if you need draw mask manually, please use our offline gradio script available in our GitHub repository). | |
3. Set the seed (default is 1234). | |
4. Click 'Start Processing' to process the image. | |
5. The result will be displayed. | |
Note: The mask should be a binary image where the object to be removed is white and the background is black. | |
More details can be found at our [GitHub Repository](https://github.com/PRIS-CV/Omnieraser). | |
""") | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=1, variant="panel"): | |
gr.Markdown("## 📥 Input Panel") | |
with gr.Group(): | |
input_image = gr.Image(label="Upload Image", type="pil", image_mode="RGB") | |
uploaded_mask = gr.Image(label="Upload Mask", type="pil", image_mode="L") | |
with gr.Row(variant="compact"): | |
run_button = gr.Button( | |
"🚀 Start Processing", | |
variant="primary", | |
size="lg" | |
) | |
with gr.Group(): | |
gr.Markdown("### ⚙️ Control Parameters") | |
seed = gr.Slider( | |
label="Random Seed", | |
minimum=-1, | |
maximum=2147483647, | |
value=1234, | |
step=1, | |
info="-1 for random generation" | |
) | |
with gr.Column(scale=1, variant="panel"): | |
gr.Markdown("## 📤 Output Panel") | |
with gr.Tabs(): | |
with gr.Tab("Final Result"): | |
inpaint_result = gr.Gallery( | |
label="Generated Image", | |
columns=2, | |
height=450, | |
preview=True, | |
object_fit="contain" | |
) | |
with gr.Tab("Visualization Steps"): | |
gallery = gr.Gallery( | |
label="Workflow Steps", | |
columns=2, | |
height=450, | |
object_fit="contain" | |
) | |
with gr.Column(scale=1, variant="panel"): | |
with gr.Column(variant="panel"): | |
gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"]) | |
example = gr.Examples( | |
examples=image_examples, | |
inputs=[ | |
input_image, uploaded_mask | |
], | |
outputs=[inpaint_result, gallery], | |
examples_per_page=10, | |
label="Click any example to load", | |
elem_id="inline-examples" | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
input_image, | |
uploaded_mask, | |
ddim_steps, | |
seed, | |
scale, | |
removal_prompt, | |
], | |
outputs=[inpaint_result, gallery] | |
) | |
demo.launch() | |