Omnieraser / app.py
theSure's picture
Update app.py
c27a6b3 verified
import io
import os
import shutil
import uuid
import torch
import random
import spaces
import gradio as gr
import numpy as np
from PIL import Image, ImageCms
import torch
from diffusers import FluxTransformer2DModel
from diffusers.utils import load_image
from pipeline_flux_control_removal import FluxControlRemovalPipeline
pipe = None
torch.set_grad_enabled(False)
image_examples = [
[
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
"example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
],
[
"example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
"example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
],
[
"example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
"example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
],
[
"example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
"example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
],
[
"example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
"example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
],
[
"example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
"example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
]
]
base_model_path = 'black-forest-labs/FLUX.1-dev'
lora_path = 'theSure/Omnieraser'
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
with torch.no_grad():
initial_input_channels = transformer.config.in_channels
new_linear = torch.nn.Linear(
transformer.x_embedder.in_features*4,
transformer.x_embedder.out_features,
bias=transformer.x_embedder.bias is not None,
dtype=transformer.dtype,
device=transformer.device,
)
new_linear.weight.zero_()
new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight)
if transformer.x_embedder.bias is not None:
new_linear.bias.copy_(transformer.x_embedder.bias)
transformer.x_embedder = new_linear
transformer.register_to_config(in_channels=initial_input_channels*4)
pipe = FluxControlRemovalPipeline.from_pretrained(
base_model_path,
transformer=transformer,
torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
gr.Info(str(f"Inject LoRA: {lora_path}"))
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
@spaces.GPU
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
@spaces.GPU
def predict(
input_image,
uploaded_mask,
prompt,
ddim_steps,
seed,
scale,
):
gr.Info(str(f"Set seed = {seed}"))
size1, size2 = input_image.convert("RGB").size
icc_profile = input_image.info.get('icc_profile')
if icc_profile:
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
srgb_profile = ImageCms.createProfile("sRGB")
io_handle = io.BytesIO(icc_profile)
src_profile = ImageCms.ImageCmsProfile(io_handle)
input_image = ImageCms.profileToProfile(input_image, src_profile, srgb_profile)
input_image.info.pop('icc_profile', None)
if size1 < size2:
input_image = input_image.convert("RGB").resize((1024, int(size2 / size1 * 1024)))
else:
input_image = input_image.convert("RGB").resize((int(size1 / size2 * 1024), 1024))
img = np.array(input_image.convert("RGB"))
W = int(np.shape(img)[1] - np.shape(img)[1] % 16)
H = int(np.shape(img)[0] - np.shape(img)[0] % 16)
input_image = input_image.resize((H, W))
uploaded_mask = uploaded_mask.resize((H, W))
if seed == -1:
seed = random.randint(1, 2147483647)
set_seed(random.randint(1, 2147483647))
else:
set_seed(seed)
base_model_path = 'black-forest-labs/FLUX.1-dev'
lora_path = 'theSure/Omnieraser'
result = pipe(
prompt=prompt,
control_image=input_image.convert("RGB"),
control_mask=uploaded_mask.convert("RGB"),
width=W,
height=H,
num_inference_steps=ddim_steps,
generator=torch.Generator("cuda").manual_seed(seed),
guidance_scale=scale,
max_sequence_length=512,
).images[0]
mask_np = np.array(uploaded_mask.convert("RGB"))
red = np.array(input_image).astype("float") * 1
red[:, :, 0] = 180.0
red[:, :, 2] = 0
red[:, :, 1] = 0
result_m = np.array(input_image)
result_m = Image.fromarray(
(
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
).astype("uint8")
)
dict_res = [input_image, uploaded_mask, result_m, result]
dict_out = [result]
image_path = None
mask_path = None
return dict_out, dict_res
def infer(
input_image,
uploaded_mask,
ddim_steps,
seed,
scale,
removal_prompt,
):
return predict(input_image,
uploaded_mask,
removal_prompt,
ddim_steps,
seed,
scale,
)
def process_example(image_paths, mask_paths):
global image_path, mask_path
image = Image.open(image_paths).convert("RGB")
mask = Image.open(mask_paths).convert("L")
black_background = Image.new("RGB", image.size, (0, 0, 0))
masked_image = Image.composite(black_background, image, mask)
image_path = image_paths
mask_path = mask_paths
return masked_image
custom_css = """
.contain { max-width: 1200px !important; }
.custom-image {
border: 2px dashed #7e22ce !important;
border-radius: 12px !important;
transition: all 0.3s ease !important;
}
.custom-image:hover {
border-color: #9333ea !important;
box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important;
}
.btn-primary {
background: linear-gradient(45deg, #7e22ce, #9333ea) !important;
border: none !important;
color: white !important;
border-radius: 8px !important;
}
#inline-examples {
border: 1px solid #e2e8f0 !important;
border-radius: 12px !important;
padding: 16px !important;
margin-top: 8px !important;
}
#inline-examples .thumbnail {
border-radius: 8px !important;
transition: transform 0.2s ease !important;
}
#inline-examples .thumbnail:hover {
transform: scale(1.05);
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}
.example-title h3 {
margin: 0 0 12px 0 !important;
color: #475569 !important;
font-size: 1.1em !important;
display: flex !important;
align-items: center !important;
}
.example-title h3::before {
content: "📚";
margin-right: 8px;
font-size: 1.2em;
}
.row { align-items: stretch !important; }
.panel { height: 100%; }
"""
with gr.Blocks(
css=custom_css,
theme=gr.themes.Soft(
primary_hue="purple",
secondary_hue="purple",
font=[gr.themes.GoogleFont('Inter'), 'sans-serif']
),
title="Omnieraser"
) as demo:
ddim_steps = gr.Slider(visible=False, value=28)
scale = gr.Slider(visible=False, value=3.5)
seed = gr.Slider(visible=False, value=-1)
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
gr.Markdown("""
<div align="center">
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">🪄 Omnieraser</h1>
</div>
""")
gr.Markdown("""
This is the demo of the paper "OmniEraser: Remove Objects and Their Effects in Images with Paired Video-Frame Data".
To use this application:
1. Upload an image.
2. Upload a pre-defined mask (Unfortunatey, you cannot sketch mask here due to the compatibility issues with zerogpu, if you need draw mask manually, please use our offline gradio script available in our GitHub repository).
3. Set the seed (default is 1234).
4. Click 'Start Processing' to process the image.
5. The result will be displayed.
Note: The mask should be a binary image where the object to be removed is white and the background is black.
More details can be found at our [GitHub Repository](https://github.com/PRIS-CV/Omnieraser).
""")
with gr.Row(equal_height=False):
with gr.Column(scale=1, variant="panel"):
gr.Markdown("## 📥 Input Panel")
with gr.Group():
input_image = gr.Image(label="Upload Image", type="pil", image_mode="RGB")
uploaded_mask = gr.Image(label="Upload Mask", type="pil", image_mode="L")
with gr.Row(variant="compact"):
run_button = gr.Button(
"🚀 Start Processing",
variant="primary",
size="lg"
)
with gr.Group():
gr.Markdown("### ⚙️ Control Parameters")
seed = gr.Slider(
label="Random Seed",
minimum=-1,
maximum=2147483647,
value=1234,
step=1,
info="-1 for random generation"
)
with gr.Column(scale=1, variant="panel"):
gr.Markdown("## 📤 Output Panel")
with gr.Tabs():
with gr.Tab("Final Result"):
inpaint_result = gr.Gallery(
label="Generated Image",
columns=2,
height=450,
preview=True,
object_fit="contain"
)
with gr.Tab("Visualization Steps"):
gallery = gr.Gallery(
label="Workflow Steps",
columns=2,
height=450,
object_fit="contain"
)
with gr.Column(scale=1, variant="panel"):
with gr.Column(variant="panel"):
gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"])
example = gr.Examples(
examples=image_examples,
inputs=[
input_image, uploaded_mask
],
outputs=[inpaint_result, gallery],
examples_per_page=10,
label="Click any example to load",
elem_id="inline-examples"
)
run_button.click(
fn=infer,
inputs=[
input_image,
uploaded_mask,
ddim_steps,
seed,
scale,
removal_prompt,
],
outputs=[inpaint_result, gallery]
)
demo.launch()