Omnieraser / app.py
theSure's picture
Update app.py
585ea4e verified
raw
history blame
10.9 kB
import io
import os
import shutil
import uuid
import torch
import random
import spaces
import gradio as gr
import numpy as np
from PIL import Image, ImageCms
import torch
from diffusers import FluxTransformer2DModel
from diffusers.utils import load_image
from pipeline_flux_control_removal import FluxControlRemovalPipeline
# 初始化模型部分
pipe = None
torch.set_grad_enabled(False)
# 示例数据
image_examples = [
[
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
"example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
],
[
"example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
"example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
],
[
"example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
"example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
],
[
"example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
"example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
],
[
"example/image/9a3b6af9-c733-46a4-88d4-d77604194102.png",
"example/mask/9a3b6af9-c733-46a4-88d4-d77604194102.png"
],
[
"example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
"example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
],
[
"example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
"example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
]
]
# 模型加载代码(保持不变)
base_model_path = 'black-forest-labs/FLUX.1-dev'
lora_path = 'theSure/Omnieraser'
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
with torch.no_grad():
initial_input_channels = transformer.config.in_channels
new_linear = torch.nn.Linear(
transformer.x_embedder.in_features*4,
transformer.x_embedder.out_features,
bias=transformer.x_embedder.bias is not None,
dtype=transformer.dtype,
device=transformer.device,
)
new_linear.weight.zero_()
new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight)
if transformer.x_embedder.bias is not None:
new_linear.bias.copy_(transformer.x_embedder.bias)
transformer.x_embedder = new_linear
transformer.register_to_config(in_channels=initial_input_channels*4)
pipe = FluxControlRemovalPipeline.from_pretrained(
base_model_path,
transformer=transformer,
torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
gr.Info(str(f"Inject LoRA: {lora_path}"))
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
# 辅助函数
@spaces.GPU
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
# 主要处理函数
@spaces.GPU
def predict(
input_image,
prompt,
ddim_steps,
seed,
scale,
image_state, # 使用State替代全局变量
mask_state # 使用State替代全局变量
):
if image_state is not None and mask_state is not None:
input_image["background"] = load_image(image_state).convert("RGB")
input_image["layers"][0] = load_image(mask_state).convert("RGB")
# 保持原有图像处理逻辑不变
size1, size2 = input_image["background"].convert("RGB").size
icc_profile = input_image["background"].info.get('icc_profile')
if icc_profile:
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
srgb_profile = ImageCms.createProfile("sRGB")
io_handle = io.BytesIO(icc_profile)
src_profile = ImageCms.ImageCmsProfile(io_handle)
input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
input_image["background"].info.pop('icc_profile', None)
# ... 保持原有图像尺寸调整逻辑不变
# 保持原有seed处理逻辑
if seed == -1:
seed = random.randint(1, 2147483647)
set_seed(seed)
else:
set_seed(seed)
# 保持原有mask处理逻辑
if image_state is None:
img=input_image["layers"][0]
img_data = np.array(img)
alpha_channel = img_data[:, :, 3]
white_background = np.ones_like(alpha_channel) * 255
gray_image = white_background.copy()
gray_image[alpha_channel == 0] = 0
gray_image_pil = Image.fromarray(gray_image).convert('L')
else:
gray_image_pil = input_image["layers"][0]
# 保持原有生成逻辑
result = pipe(
prompt=prompt,
control_image=input_image["background"].convert("RGB"),
control_mask=gray_image_pil.convert("RGB"),
width=H,
height=W,
num_inference_steps=ddim_steps,
generator=torch.Generator("cuda").manual_seed(seed),
guidance_scale=scale,
max_sequence_length=512,
).images[0]
# 保持原有后处理逻辑
mask_np = np.array(input_image["layers"][0].convert("RGB"))
red = np.array(input_image["background"]).astype("float") * 1
red[:, :, 0] = 180.0
red[:, :, 2] = 0
red[:, :, 1] = 0
result_m = np.array(input_image["background"])
result_m = Image.fromarray(
(
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
).astype("uint8")
)
dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
dict_out = [result]
return dict_out, dict_res
# 示例处理函数
def process_example(image_paths, mask_paths):
image = Image.open(image_paths).convert("RGB")
mask = Image.open(mask_paths).convert("L")
black_background = Image.new("RGB", image.size, (0, 0, 0))
masked_image = Image.composite(black_background, image, mask)
return masked_image, image_paths, mask_paths # 返回路径到State
# 界面布局(保持原有CSS和布局逻辑)
custom_css = """
.contain { max-width: 1200px !important; }
.custom-image {
border: 2px dashed #7e22ce !important;
border-radius: 12px !important;
transition: all 0.3s ease !important;
}
.custom-image:hover {
border-color: #9333ea !important;
box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important;
}
.btn-primary {
background: linear-gradient(45deg, #7e22ce, #9333ea) !important;
border: none !important;
color: white !important;
border-radius: 8px !important;
}
#inline-examples {
border: 1px solid #e2e8f0 !important;
border-radius: 12px !important;
padding: 16px !important;
margin-top: 8px !important;
}
#inline-examples .thumbnail {
border-radius: 8px !important;
transition: transform 0.2s ease !important;
}
#inline-examples .thumbnail:hover {
transform: scale(1.05);
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}
.example-title h3 {
margin: 0 0 12px 0 !important;
color: #475569 !important;
font-size: 1.1em !important;
display: flex !important;
align-items: center !important;
}
.example-title h3::before {
content: "📚";
margin-right: 8px;
font-size: 1.2em;
}
.row { align-items: stretch !important; }
.panel { height: 100%; }
"""
with gr.Blocks(
css=custom_css,
theme=gr.themes.Soft(
primary_hue="purple",
secondary_hue="purple",
font=[gr.themes.GoogleFont('Inter'), 'sans-serif']
),
title="Omnieraser"
) as demo:
# 添加状态存储
image_state = gr.State()
mask_state = gr.State()
# 保持原有组件声明
ddim_steps = gr.Slider(visible=False, value=28)
scale = gr.Slider(visible=False, value=3.5)
seed = gr.Slider(visible=False, value=-1)
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
# 保持原有界面布局
with gr.Row(equal_height=False):
with gr.Column(scale=1, variant="panel"):
gr.Markdown("## 📥 Input Panel")
with gr.Group():
input_image = gr.Sketchpad(
sources=["upload"],
type="pil",
label="Upload & Annotate",
elem_id="custom-image",
interactive=True
)
with gr.Row(variant="compact"):
run_button = gr.Button("🚀 Start Processing", variant="primary", size="lg")
with gr.Group():
gr.Markdown("### ⚙️ Control Parameters")
seed = gr.Slider(
label="Random Seed",
minimum=-1,
maximum=2147483647,
value=1234,
step=1,
info="-1 for random generation"
)
with gr.Column(variant="panel"):
gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"])
example = gr.Examples(
examples=image_examples,
inputs=[
gr.Image(label="Image", type="filepath",visible=False),
gr.Image(label="Mask", type="filepath",visible=False)
],
outputs=[input_image, image_state, mask_state], # 更新状态输出
fn=process_example,
run_on_click=True,
examples_per_page=10,
label="Click any example to load",
elem_id="inline-examples"
)
with gr.Column(scale=1, variant="panel"):
gr.Markdown("## 📤 Output Panel")
with gr.Tabs():
with gr.Tab("Final Result"):
inpaint_result = gr.Gallery(
label="Generated Image",
columns=2,
height=450,
preview=True,
object_fit="contain"
)
with gr.Tab("Visualization Steps"):
gallery = gr.Gallery(
label="Workflow Steps",
columns=2,
height=450,
object_fit="contain"
)
# 更新按钮点击事件
run_button.click(
fn=lambda i, d, s, sc, rp, img, msk: predict(i, rp, d, s, sc, img, msk),
inputs=[
input_image,
ddim_steps,
seed,
scale,
removal_prompt,
image_state, # 添加状态输入
mask_state # 添加状态输入
],
outputs=[inpaint_result, gallery]
)
demo.launch()