File size: 10,549 Bytes
a76b03e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import datetime
import math
import os
import numpy as np
import torch
import torchaudio
from funasr import AutoModel
from pyannote.audio import Audio, Pipeline
from pyannote.core import Segment
# Load models
model = AutoModel(
model="FunAudioLLM/SenseVoiceSmall",
# vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
# vad_kwargs={"max_single_segment_time": 30000},
hub="hf",
device="cuda" if torch.cuda.is_available() else "cpu",
)
pyannote_pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1", use_auth_token=os.getenv("HF_TOKEN")
)
if torch.cuda.is_available():
pyannote_pipeline.to(torch.device("cuda"))
# Emoji dictionaries and formatting functions
emo_dict = {
"<|HAPPY|>": "๐",
"<|SAD|>": "๐",
"<|ANGRY|>": "๐ก",
"<|NEUTRAL|>": "",
"<|FEARFUL|>": "๐ฐ",
"<|DISGUSTED|>": "๐คข",
"<|SURPRISED|>": "๐ฎ",
}
event_dict = {
"<|BGM|>": "๐ผ",
"<|Speech|>": "",
"<|Applause|>": "๐",
"<|Laughter|>": "๐",
"<|Cry|>": "๐ญ",
"<|Sneeze|>": "๐คง",
"<|Breath|>": "",
"<|Cough|>": "๐คง",
}
emoji_dict = {
"<|nospeech|><|Event_UNK|>": "โ",
"<|zh|>": "",
"<|en|>": "",
"<|yue|>": "",
"<|ja|>": "",
"<|ko|>": "",
"<|nospeech|>": "",
"<|HAPPY|>": "๐",
"<|SAD|>": "๐",
"<|ANGRY|>": "๐ก",
"<|NEUTRAL|>": "",
"<|BGM|>": "๐ผ",
"<|Speech|>": "",
"<|Applause|>": "๐",
"<|Laughter|>": "๐",
"<|FEARFUL|>": "๐ฐ",
"<|DISGUSTED|>": "๐คข",
"<|SURPRISED|>": "๐ฎ",
"<|Cry|>": "๐ญ",
"<|EMO_UNKNOWN|>": "",
"<|Sneeze|>": "๐คง",
"<|Breath|>": "",
"<|Cough|>": "๐ท",
"<|Sing|>": "",
"<|Speech_Noise|>": "",
"<|withitn|>": "",
"<|woitn|>": "",
"<|GBG|>": "",
"<|Event_UNK|>": "",
}
lang_dict = {
"<|zh|>": "<|lang|>",
"<|en|>": "<|lang|>",
"<|yue|>": "<|lang|>",
"<|ja|>": "<|lang|>",
"<|ko|>": "<|lang|>",
"<|nospeech|>": "<|lang|>",
}
emo_set = {"๐", "๐", "๐ก", "๐ฐ", "๐คข", "๐ฎ"}
event_set = {"๐ผ", "๐", "๐", "๐ญ", "๐คง", "๐ท"}
def format_str(s):
for sptk in emoji_dict:
s = s.replace(sptk, emoji_dict[sptk])
return s
def format_str_v2(s):
sptk_dict = {}
for sptk in emoji_dict:
sptk_dict[sptk] = s.count(sptk)
s = s.replace(sptk, "")
emo = "<|NEUTRAL|>"
for e in emo_dict:
if sptk_dict[e] > sptk_dict[emo]:
emo = e
for e in event_dict:
if sptk_dict[e] > 0:
s = event_dict[e] + s
s = s + emo_dict[emo]
for emoji in emo_set.union(event_set):
s = s.replace(" " + emoji, emoji)
s = s.replace(emoji + " ", emoji)
return s.strip()
def format_str_v3(s):
def get_emo(s):
return s[-1] if s[-1] in emo_set else None
def get_event(s):
return s[0] if s[0] in event_set else None
s = s.replace("<|nospeech|><|Event_UNK|>", "โ")
for lang in lang_dict:
s = s.replace(lang, "<|lang|>")
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
new_s = " " + s_list[0]
cur_ent_event = get_event(new_s)
for i in range(1, len(s_list)):
if len(s_list[i]) == 0:
continue
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
s_list[i] = s_list[i][1:]
# else:
cur_ent_event = get_event(s_list[i])
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
new_s = new_s[:-1]
new_s += s_list[i].strip().lstrip()
new_s = new_s.replace("The.", " ")
return new_s.strip()
def time_to_seconds(time_str):
h, m, s = time_str.split(":")
return round(int(h) * 3600 + int(m) * 60 + float(s), 9)
import datetime
def parse_time(time_str):
# Remove 's' if present at the end of the string
time_str = time_str.rstrip("s")
# Split the time string into hours, minutes, and seconds
parts = time_str.split(":")
if len(parts) == 3:
h, m, s = parts
elif len(parts) == 2:
h = "0"
m, s = parts
else:
h = m = "0"
s = parts[0]
return int(h) * 3600 + int(m) * 60 + float(s)
def format_time(seconds, use_short_format=True):
if isinstance(seconds, datetime.timedelta):
seconds = seconds.total_seconds()
minutes, seconds = divmod(seconds, 60)
hours, minutes = divmod(int(minutes), 60)
if use_short_format or (hours == 0 and minutes == 0):
return f"{seconds:05.3f}s"
elif hours == 0:
return f"{minutes:02d}:{seconds:06.3f}"
else:
return f"{hours:02d}:{minutes:02d}:{seconds:06.3f}"
def format_time_with_leading_zeros(seconds):
formatted = f"{seconds:06.3f}s"
print(f"Debug: Input seconds: {seconds}, Formatted output: {formatted}")
return formatted
def generate_diarization(audio_path):
# Get the Hugging Face token from the environment variable
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise ValueError(
"HF_TOKEN environment variable is not set. Please set it with your Hugging Face token."
)
# Initialize the audio processor
audio = Audio(sample_rate=16000, mono=True)
# Load the pretrained pipeline
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1", use_auth_token=hf_token
)
# Send pipeline to GPU if available
if torch.cuda.is_available():
pipeline.to(torch.device("cuda"))
# Set the correct path for the audio file
script_dir = os.path.dirname(os.path.abspath(__file__))
possible_paths = [
os.path.join(script_dir, "example", "mtr.mp3"),
os.path.join(script_dir, "..", "example", "mtr.mp3"),
os.path.join(script_dir, "mtr.mp3"),
"mtr.mp3",
audio_path, # Add the provided audio_path to the list of possible paths
]
file_path = None
for path in possible_paths:
if os.path.exists(path):
file_path = path
break
if file_path is None:
print("Debugging information:")
print(f"Current working directory: {os.getcwd()}")
print(f"Script directory: {script_dir}")
print("Attempted paths:")
for path in possible_paths:
print(f" {path}")
raise FileNotFoundError(
"Could not find the audio file. Please ensure it's in the correct location."
)
print(f"Using audio file: {file_path}")
# Process the audio file
waveform, sample_rate = audio(file_path)
# Create a dictionary with the audio information
file = {"waveform": waveform, "sample_rate": sample_rate, "uri": "mtr"}
# Run the diarization
output = pipeline(file)
# Save results in human-readable format
diarization_segments = []
txt_file = "mtr_dn.txt"
with open(txt_file, "w") as f:
for turn, _, speaker in output.itertracks(yield_label=True):
start_time = format_time(turn.start)
end_time = format_time(turn.end)
duration = format_time(turn.end - turn.start)
line = f"{start_time} - {end_time} ({duration}): {speaker}\n"
f.write(line)
print(line.strip())
diarization_segments.append(
(
parse_time(start_time),
parse_time(end_time),
parse_time(duration),
speaker,
)
)
print(f"\nHuman-readable diarization results saved to {txt_file}")
return diarization_segments
def process_audio(audio_path, language="yue", fs=16000):
# Generate diarization segments
diarization_segments = generate_diarization(audio_path)
# Load and preprocess audio
waveform, sample_rate = torchaudio.load(audio_path)
if sample_rate != fs:
resampler = torchaudio.transforms.Resample(sample_rate, fs)
waveform = resampler(waveform)
input_wav = waveform.mean(0).numpy()
# Determine if the audio is less than one minute
total_duration = sum(duration for _, _, duration, _ in diarization_segments)
use_short_format = total_duration < 60
# Process the audio in chunks based on diarization segments
results = []
for start_time, end_time, duration, speaker in diarization_segments:
start_seconds = start_time
end_seconds = end_time
# Convert time to sample indices
start_sample = int(start_seconds * fs)
end_sample = int(end_seconds * fs)
chunk = input_wav[start_sample:end_sample]
try:
text = model.generate(
input=chunk,
cache={},
language=language,
use_itn=True,
batch_size_s=500,
merge_vad=True,
)
text = text[0]["text"]
text = format_str_v3(text)
# Handle empty transcriptions
if not text.strip():
text = "[inaudible]"
results.append((speaker, start_time, end_time, duration, text))
except AssertionError as e:
if "choose a window size" in str(e):
print(
f"Warning: Audio segment too short to process. Skipping. Error: {e}"
)
results.append((speaker, start_time, end_time, duration, "[too short]"))
else:
raise
# Format the results
formatted_text = ""
for speaker, start, end, duration, text in results:
start_str = format_time_with_leading_zeros(start)
end_str = format_time_with_leading_zeros(end)
duration_str = format_time_with_leading_zeros(duration)
speaker_num = "1" if speaker == "SPEAKER_00" else "2"
line = f"{start_str} - {end_str} ({duration_str}) Speaker {speaker_num}: {text}"
formatted_text += line + "\n"
print(f"Debug: Formatted line: {line}")
print("Debug: Full formatted text:")
print(formatted_text)
return formatted_text.strip()
if __name__ == "__main__":
audio_path = "example/mtr.mp3" # Replace with your audio file path
language = "yue" # Set language to Cantonese
result = process_audio(audio_path, language)
# Save the result to mtr.txt
output_path = "mtr.txt"
with open(output_path, "w", encoding="utf-8") as f:
f.write(result)
print(f"Diarization and transcription result has been saved to {output_path}")
|