terry-li-hm
commited on
Commit
·
a76b03e
1
Parent(s):
a08029c
`sv.py`
Browse files
sv.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchaudio
|
8 |
+
from funasr import AutoModel
|
9 |
+
from pyannote.audio import Audio, Pipeline
|
10 |
+
from pyannote.core import Segment
|
11 |
+
|
12 |
+
# Load models
|
13 |
+
model = AutoModel(
|
14 |
+
model="FunAudioLLM/SenseVoiceSmall",
|
15 |
+
# vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
16 |
+
# vad_kwargs={"max_single_segment_time": 30000},
|
17 |
+
hub="hf",
|
18 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
19 |
+
)
|
20 |
+
|
21 |
+
pyannote_pipeline = Pipeline.from_pretrained(
|
22 |
+
"pyannote/speaker-diarization-3.1", use_auth_token=os.getenv("HF_TOKEN")
|
23 |
+
)
|
24 |
+
if torch.cuda.is_available():
|
25 |
+
pyannote_pipeline.to(torch.device("cuda"))
|
26 |
+
|
27 |
+
# Emoji dictionaries and formatting functions
|
28 |
+
emo_dict = {
|
29 |
+
"<|HAPPY|>": "😊",
|
30 |
+
"<|SAD|>": "😔",
|
31 |
+
"<|ANGRY|>": "😡",
|
32 |
+
"<|NEUTRAL|>": "",
|
33 |
+
"<|FEARFUL|>": "😰",
|
34 |
+
"<|DISGUSTED|>": "🤢",
|
35 |
+
"<|SURPRISED|>": "😮",
|
36 |
+
}
|
37 |
+
|
38 |
+
event_dict = {
|
39 |
+
"<|BGM|>": "🎼",
|
40 |
+
"<|Speech|>": "",
|
41 |
+
"<|Applause|>": "👏",
|
42 |
+
"<|Laughter|>": "😀",
|
43 |
+
"<|Cry|>": "😭",
|
44 |
+
"<|Sneeze|>": "🤧",
|
45 |
+
"<|Breath|>": "",
|
46 |
+
"<|Cough|>": "🤧",
|
47 |
+
}
|
48 |
+
|
49 |
+
emoji_dict = {
|
50 |
+
"<|nospeech|><|Event_UNK|>": "❓",
|
51 |
+
"<|zh|>": "",
|
52 |
+
"<|en|>": "",
|
53 |
+
"<|yue|>": "",
|
54 |
+
"<|ja|>": "",
|
55 |
+
"<|ko|>": "",
|
56 |
+
"<|nospeech|>": "",
|
57 |
+
"<|HAPPY|>": "😊",
|
58 |
+
"<|SAD|>": "😔",
|
59 |
+
"<|ANGRY|>": "😡",
|
60 |
+
"<|NEUTRAL|>": "",
|
61 |
+
"<|BGM|>": "🎼",
|
62 |
+
"<|Speech|>": "",
|
63 |
+
"<|Applause|>": "👏",
|
64 |
+
"<|Laughter|>": "😀",
|
65 |
+
"<|FEARFUL|>": "😰",
|
66 |
+
"<|DISGUSTED|>": "🤢",
|
67 |
+
"<|SURPRISED|>": "😮",
|
68 |
+
"<|Cry|>": "😭",
|
69 |
+
"<|EMO_UNKNOWN|>": "",
|
70 |
+
"<|Sneeze|>": "🤧",
|
71 |
+
"<|Breath|>": "",
|
72 |
+
"<|Cough|>": "😷",
|
73 |
+
"<|Sing|>": "",
|
74 |
+
"<|Speech_Noise|>": "",
|
75 |
+
"<|withitn|>": "",
|
76 |
+
"<|woitn|>": "",
|
77 |
+
"<|GBG|>": "",
|
78 |
+
"<|Event_UNK|>": "",
|
79 |
+
}
|
80 |
+
|
81 |
+
lang_dict = {
|
82 |
+
"<|zh|>": "<|lang|>",
|
83 |
+
"<|en|>": "<|lang|>",
|
84 |
+
"<|yue|>": "<|lang|>",
|
85 |
+
"<|ja|>": "<|lang|>",
|
86 |
+
"<|ko|>": "<|lang|>",
|
87 |
+
"<|nospeech|>": "<|lang|>",
|
88 |
+
}
|
89 |
+
|
90 |
+
emo_set = {"😊", "😔", "😡", "😰", "🤢", "😮"}
|
91 |
+
event_set = {"🎼", "👏", "😀", "😭", "🤧", "😷"}
|
92 |
+
|
93 |
+
|
94 |
+
def format_str(s):
|
95 |
+
for sptk in emoji_dict:
|
96 |
+
s = s.replace(sptk, emoji_dict[sptk])
|
97 |
+
return s
|
98 |
+
|
99 |
+
|
100 |
+
def format_str_v2(s):
|
101 |
+
sptk_dict = {}
|
102 |
+
for sptk in emoji_dict:
|
103 |
+
sptk_dict[sptk] = s.count(sptk)
|
104 |
+
s = s.replace(sptk, "")
|
105 |
+
emo = "<|NEUTRAL|>"
|
106 |
+
for e in emo_dict:
|
107 |
+
if sptk_dict[e] > sptk_dict[emo]:
|
108 |
+
emo = e
|
109 |
+
for e in event_dict:
|
110 |
+
if sptk_dict[e] > 0:
|
111 |
+
s = event_dict[e] + s
|
112 |
+
s = s + emo_dict[emo]
|
113 |
+
|
114 |
+
for emoji in emo_set.union(event_set):
|
115 |
+
s = s.replace(" " + emoji, emoji)
|
116 |
+
s = s.replace(emoji + " ", emoji)
|
117 |
+
return s.strip()
|
118 |
+
|
119 |
+
|
120 |
+
def format_str_v3(s):
|
121 |
+
def get_emo(s):
|
122 |
+
return s[-1] if s[-1] in emo_set else None
|
123 |
+
|
124 |
+
def get_event(s):
|
125 |
+
return s[0] if s[0] in event_set else None
|
126 |
+
|
127 |
+
s = s.replace("<|nospeech|><|Event_UNK|>", "❓")
|
128 |
+
for lang in lang_dict:
|
129 |
+
s = s.replace(lang, "<|lang|>")
|
130 |
+
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
|
131 |
+
new_s = " " + s_list[0]
|
132 |
+
cur_ent_event = get_event(new_s)
|
133 |
+
for i in range(1, len(s_list)):
|
134 |
+
if len(s_list[i]) == 0:
|
135 |
+
continue
|
136 |
+
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
|
137 |
+
s_list[i] = s_list[i][1:]
|
138 |
+
# else:
|
139 |
+
cur_ent_event = get_event(s_list[i])
|
140 |
+
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
|
141 |
+
new_s = new_s[:-1]
|
142 |
+
new_s += s_list[i].strip().lstrip()
|
143 |
+
new_s = new_s.replace("The.", " ")
|
144 |
+
return new_s.strip()
|
145 |
+
|
146 |
+
|
147 |
+
def time_to_seconds(time_str):
|
148 |
+
h, m, s = time_str.split(":")
|
149 |
+
return round(int(h) * 3600 + int(m) * 60 + float(s), 9)
|
150 |
+
|
151 |
+
|
152 |
+
import datetime
|
153 |
+
|
154 |
+
|
155 |
+
def parse_time(time_str):
|
156 |
+
# Remove 's' if present at the end of the string
|
157 |
+
time_str = time_str.rstrip("s")
|
158 |
+
|
159 |
+
# Split the time string into hours, minutes, and seconds
|
160 |
+
parts = time_str.split(":")
|
161 |
+
|
162 |
+
if len(parts) == 3:
|
163 |
+
h, m, s = parts
|
164 |
+
elif len(parts) == 2:
|
165 |
+
h = "0"
|
166 |
+
m, s = parts
|
167 |
+
else:
|
168 |
+
h = m = "0"
|
169 |
+
s = parts[0]
|
170 |
+
|
171 |
+
return int(h) * 3600 + int(m) * 60 + float(s)
|
172 |
+
|
173 |
+
|
174 |
+
def format_time(seconds, use_short_format=True):
|
175 |
+
if isinstance(seconds, datetime.timedelta):
|
176 |
+
seconds = seconds.total_seconds()
|
177 |
+
|
178 |
+
minutes, seconds = divmod(seconds, 60)
|
179 |
+
hours, minutes = divmod(int(minutes), 60)
|
180 |
+
|
181 |
+
if use_short_format or (hours == 0 and minutes == 0):
|
182 |
+
return f"{seconds:05.3f}s"
|
183 |
+
elif hours == 0:
|
184 |
+
return f"{minutes:02d}:{seconds:06.3f}"
|
185 |
+
else:
|
186 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:06.3f}"
|
187 |
+
|
188 |
+
|
189 |
+
def format_time_with_leading_zeros(seconds):
|
190 |
+
formatted = f"{seconds:06.3f}s"
|
191 |
+
print(f"Debug: Input seconds: {seconds}, Formatted output: {formatted}")
|
192 |
+
return formatted
|
193 |
+
|
194 |
+
|
195 |
+
def generate_diarization(audio_path):
|
196 |
+
# Get the Hugging Face token from the environment variable
|
197 |
+
hf_token = os.environ.get("HF_TOKEN")
|
198 |
+
if not hf_token:
|
199 |
+
raise ValueError(
|
200 |
+
"HF_TOKEN environment variable is not set. Please set it with your Hugging Face token."
|
201 |
+
)
|
202 |
+
|
203 |
+
# Initialize the audio processor
|
204 |
+
audio = Audio(sample_rate=16000, mono=True)
|
205 |
+
|
206 |
+
# Load the pretrained pipeline
|
207 |
+
pipeline = Pipeline.from_pretrained(
|
208 |
+
"pyannote/speaker-diarization-3.1", use_auth_token=hf_token
|
209 |
+
)
|
210 |
+
|
211 |
+
# Send pipeline to GPU if available
|
212 |
+
if torch.cuda.is_available():
|
213 |
+
pipeline.to(torch.device("cuda"))
|
214 |
+
|
215 |
+
# Set the correct path for the audio file
|
216 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
217 |
+
possible_paths = [
|
218 |
+
os.path.join(script_dir, "example", "mtr.mp3"),
|
219 |
+
os.path.join(script_dir, "..", "example", "mtr.mp3"),
|
220 |
+
os.path.join(script_dir, "mtr.mp3"),
|
221 |
+
"mtr.mp3",
|
222 |
+
audio_path, # Add the provided audio_path to the list of possible paths
|
223 |
+
]
|
224 |
+
|
225 |
+
file_path = None
|
226 |
+
for path in possible_paths:
|
227 |
+
if os.path.exists(path):
|
228 |
+
file_path = path
|
229 |
+
break
|
230 |
+
|
231 |
+
if file_path is None:
|
232 |
+
print("Debugging information:")
|
233 |
+
print(f"Current working directory: {os.getcwd()}")
|
234 |
+
print(f"Script directory: {script_dir}")
|
235 |
+
print("Attempted paths:")
|
236 |
+
for path in possible_paths:
|
237 |
+
print(f" {path}")
|
238 |
+
raise FileNotFoundError(
|
239 |
+
"Could not find the audio file. Please ensure it's in the correct location."
|
240 |
+
)
|
241 |
+
|
242 |
+
print(f"Using audio file: {file_path}")
|
243 |
+
|
244 |
+
# Process the audio file
|
245 |
+
waveform, sample_rate = audio(file_path)
|
246 |
+
|
247 |
+
# Create a dictionary with the audio information
|
248 |
+
file = {"waveform": waveform, "sample_rate": sample_rate, "uri": "mtr"}
|
249 |
+
|
250 |
+
# Run the diarization
|
251 |
+
output = pipeline(file)
|
252 |
+
|
253 |
+
# Save results in human-readable format
|
254 |
+
diarization_segments = []
|
255 |
+
txt_file = "mtr_dn.txt"
|
256 |
+
with open(txt_file, "w") as f:
|
257 |
+
for turn, _, speaker in output.itertracks(yield_label=True):
|
258 |
+
start_time = format_time(turn.start)
|
259 |
+
end_time = format_time(turn.end)
|
260 |
+
duration = format_time(turn.end - turn.start)
|
261 |
+
line = f"{start_time} - {end_time} ({duration}): {speaker}\n"
|
262 |
+
f.write(line)
|
263 |
+
print(line.strip())
|
264 |
+
diarization_segments.append(
|
265 |
+
(
|
266 |
+
parse_time(start_time),
|
267 |
+
parse_time(end_time),
|
268 |
+
parse_time(duration),
|
269 |
+
speaker,
|
270 |
+
)
|
271 |
+
)
|
272 |
+
|
273 |
+
print(f"\nHuman-readable diarization results saved to {txt_file}")
|
274 |
+
return diarization_segments
|
275 |
+
|
276 |
+
|
277 |
+
def process_audio(audio_path, language="yue", fs=16000):
|
278 |
+
# Generate diarization segments
|
279 |
+
diarization_segments = generate_diarization(audio_path)
|
280 |
+
|
281 |
+
# Load and preprocess audio
|
282 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
283 |
+
if sample_rate != fs:
|
284 |
+
resampler = torchaudio.transforms.Resample(sample_rate, fs)
|
285 |
+
waveform = resampler(waveform)
|
286 |
+
|
287 |
+
input_wav = waveform.mean(0).numpy()
|
288 |
+
|
289 |
+
# Determine if the audio is less than one minute
|
290 |
+
total_duration = sum(duration for _, _, duration, _ in diarization_segments)
|
291 |
+
use_short_format = total_duration < 60
|
292 |
+
|
293 |
+
# Process the audio in chunks based on diarization segments
|
294 |
+
results = []
|
295 |
+
for start_time, end_time, duration, speaker in diarization_segments:
|
296 |
+
start_seconds = start_time
|
297 |
+
end_seconds = end_time
|
298 |
+
|
299 |
+
# Convert time to sample indices
|
300 |
+
start_sample = int(start_seconds * fs)
|
301 |
+
end_sample = int(end_seconds * fs)
|
302 |
+
|
303 |
+
chunk = input_wav[start_sample:end_sample]
|
304 |
+
try:
|
305 |
+
text = model.generate(
|
306 |
+
input=chunk,
|
307 |
+
cache={},
|
308 |
+
language=language,
|
309 |
+
use_itn=True,
|
310 |
+
batch_size_s=500,
|
311 |
+
merge_vad=True,
|
312 |
+
)
|
313 |
+
text = text[0]["text"]
|
314 |
+
text = format_str_v3(text)
|
315 |
+
|
316 |
+
# Handle empty transcriptions
|
317 |
+
if not text.strip():
|
318 |
+
text = "[inaudible]"
|
319 |
+
|
320 |
+
results.append((speaker, start_time, end_time, duration, text))
|
321 |
+
except AssertionError as e:
|
322 |
+
if "choose a window size" in str(e):
|
323 |
+
print(
|
324 |
+
f"Warning: Audio segment too short to process. Skipping. Error: {e}"
|
325 |
+
)
|
326 |
+
results.append((speaker, start_time, end_time, duration, "[too short]"))
|
327 |
+
else:
|
328 |
+
raise
|
329 |
+
|
330 |
+
# Format the results
|
331 |
+
formatted_text = ""
|
332 |
+
for speaker, start, end, duration, text in results:
|
333 |
+
start_str = format_time_with_leading_zeros(start)
|
334 |
+
end_str = format_time_with_leading_zeros(end)
|
335 |
+
duration_str = format_time_with_leading_zeros(duration)
|
336 |
+
speaker_num = "1" if speaker == "SPEAKER_00" else "2"
|
337 |
+
line = f"{start_str} - {end_str} ({duration_str}) Speaker {speaker_num}: {text}"
|
338 |
+
formatted_text += line + "\n"
|
339 |
+
print(f"Debug: Formatted line: {line}")
|
340 |
+
|
341 |
+
print("Debug: Full formatted text:")
|
342 |
+
print(formatted_text)
|
343 |
+
return formatted_text.strip()
|
344 |
+
|
345 |
+
|
346 |
+
if __name__ == "__main__":
|
347 |
+
audio_path = "example/mtr.mp3" # Replace with your audio file path
|
348 |
+
language = "yue" # Set language to Cantonese
|
349 |
+
|
350 |
+
result = process_audio(audio_path, language)
|
351 |
+
|
352 |
+
# Save the result to mtr.txt
|
353 |
+
output_path = "mtr.txt"
|
354 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
355 |
+
f.write(result)
|
356 |
+
|
357 |
+
print(f"Diarization and transcription result has been saved to {output_path}")
|