File size: 8,103 Bytes
b0e3bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb1fcea
b0e3bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728f077
 
 
b0e3bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d66e60b
b0e3bba
 
 
796e2a8
728f077
cf6adbe
 
796e2a8
728f077
 
b0e3bba
6993f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e3bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf6adbe
b0e3bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import faiss
from langchain.memory import ConversationBufferMemory
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from tempfile import NamedTemporaryFile
from dotenv import load_dotenv
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
import streamlit as st
import nest_asyncio

nest_asyncio.apply()
load_dotenv()

# Initialize app resources
st.set_page_config(page_title="StudyAssist", page_icon=":book:")
st.title("StudyAssist(pharmassist-v0)")
st.write(
    "An AI/RAG application to aid students in their studies, specially optimized for the pharm 028 students. In simpler terms, chat with your pdf"
)


@st.cache_resource
def initialize_resources():
    llm_gemini = ChatGoogleGenerativeAI(
        model="gemini-1.5-flash-latest", google_api_key=os.getenv("GOOGLE_API_KEY")
    )
    return llm_gemini

#@st.cache_data
def get_retriever(pdf_file):
    with NamedTemporaryFile(suffix="pdf") as temp:
        temp.write(pdf_file.getvalue())
        pdf_loader = PyPDFLoader(temp.name, extract_images=True)
        pages = pdf_loader.load()

    st.write(f"AI Chatbot for {course_material}")

    underlying_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=20,
        length_function=len,
        is_separator_regex=False,
        separators="\n",
    )
    documents = text_splitter.split_documents(pages)
    vectorstore = faiss.FAISS.from_documents(documents, underlying_embeddings)
    doc_retiever = vectorstore.as_retriever()
       # search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10}
    #)

    return doc_retiever


chat_model = initialize_resources()

# Streamlit UI
# Course list and pdf retrieval

courses = ["PMB", "PCL", "Kelechi_research"]  # "GSP", "CPM", "PCG",  "PCH"
course_pdfs = None
doc_retriever = None
conversational_chain = None

# course = st.sidebar.selectbox("Choose course", (courses))
# docs_path = f"pdfs/{course}"
# course_pdfs = os.listdir(docs_path)
# pdfs = [os.path.join(docs_path, pdf) for pdf in course_pdfs]

course_material = "{Not selected}"


# @st.cache_resource
def query_response(query, _retriever):
    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    conversational_chain = ConversationalRetrievalChain.from_llm(
        llm=chat_model, retriever=_retriever, memory=memory, verbose=False
    )
    response = conversational_chain.run(query)

    return response


if "doc" not in st.session_state:
    st.session_state.doc = ""

course_material = st.file_uploader("or Upload your own pdf", type="pdf")

if st.session_state != "":
    try:
        if st.button("load"):
            with st.spinner("loading document.."):
                doc_retriever = get_retriever(course_material)
                
            st.success("File loading successful, vector db initialize")
    except Exception as e:
        st.error(e)

import os
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import faiss
from langchain.memory import ConversationBufferMemory
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from tempfile import NamedTemporaryFile
from dotenv import load_dotenv
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
import streamlit as st
import nest_asyncio

nest_asyncio.apply()
load_dotenv()

# Initialize app resources
st.set_page_config(page_title="StudyAssist", page_icon=":book:")
st.title("StudyAssist(pharmassist-v0)")
st.write(
    "An AI/RAG application to aid students in their studies, specially optimized for the pharm 028 students. In simpler terms, chat with your pdf"
)


@st.cache_resource
def initialize_resources():
    llm_gemini = ChatGoogleGenerativeAI(
        model="gemini-1.5-flash-latest", google_api_key=os.getenv("GOOGLE_API_KEY")
    )
    return llm_gemini


def get_retriever(pdf_file):
    with NamedTemporaryFile(suffix="pdf") as temp:
        temp.write(pdf_file.getvalue())
        pdf_loader = PyPDFLoader(temp.name, extract_images=True)
        pages = pdf_loader.load()

    # st.write(f"AI Chatbot for {course_material}")

    underlying_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=20,
        length_function=len,
        is_separator_regex=False,
        separators="\n",
    )
    documents = text_splitter.split_documents(pages)
    vectorstore = faiss.FAISS.from_documents(documents, underlying_embeddings)
    doc_retiever = vectorstore.as_retriever(
        search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10}
    )

    return doc_retiever


chat_model = initialize_resources()

# Streamlit UI
# Course list and pdf retrieval

courses = ["PMB", "PCL", "Kelechi_research"]  # "GSP", "CPM", "PCG",  "PCH"
course_pdfs = None
doc_retriever = None
conversational_chain = None

# course = st.sidebar.selectbox("Choose course", (courses))
# docs_path = f"pdfs/{course}"
# course_pdfs = os.listdir(docs_path)
# pdfs = [os.path.join(docs_path, pdf) for pdf in course_pdfs]

course_material = "{Not selected}"


# @st.cache_resource
def query_response(query, _retriever):
    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    conversational_chain = ConversationalRetrievalChain.from_llm(
        llm=chat_model, retriever=_retriever, memory=memory, verbose=False
    )
    response = conversational_chain.run(query)

    return response


if "doc" not in st.session_state:
    st.session_state.doc = ""

course_material = st.file_uploader("or Upload your own pdf", type="pdf")

if st.session_state != "":
    try:
        with st.spinner("loading document.."):
            doc_retriever = get_retriever(course_material)
        st.success("File loading successful, vector db initialize")
    except Exception as e:
        st.error(e)

    # We store the conversation in the session state.
    # This will be use to render the chat conversation.
    # We initialize it with the first message we want to be greeted with.
    if "messages" not in st.session_state:
        st.session_state.messages = [
            {"role": "assistant", "content": "Yoo, How far boss?"}
        ]

    if "current_response" not in st.session_state:
        st.session_state.current_response = ""

    # We loop through each message in the session state and render it as
    # a chat message.
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    # We take questions/instructions from the chat input to pass to the LLM
    if user_prompt := st.chat_input("Ask...", key="user_input"):
        # Add our input to the session state
        st.session_state.messages.append({"role": "user", "content": user_prompt})

        # Add our input to the chat window
        with st.chat_message("user"):
            st.markdown(user_prompt)

        # Pass our input to the llm chain and capture the final responses.
        # here once the llm has finished generating the complete response.
        response = query_response(user_prompt, doc_retriever)
        # Add the response to the session state
        st.session_state.messages.append({"role": "assistant", "content": response})

        # Add the response to the chat window
        with st.chat_message("assistant"):
            st.markdown(response)
#
st.write("")
st.write("")


st.markdown(
    """
    <div style="text-align: center; padding: 1rem;">
        Project by <a href="https://github.com/kelechi-c" target="_blank" style="color: white; font-weight: bold; text-decoration: none;">
         kelechi(tensor)</a>
    </div>
""",
    unsafe_allow_html=True,
)