Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 3 |
+
from langchain_community.vectorstores import faiss
|
| 4 |
+
from langchain.memory import ConversationBufferMemory
|
| 5 |
+
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
| 6 |
+
from tempfile import NamedTemporaryFile
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 9 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 10 |
+
import streamlit as st
|
| 11 |
+
import nest_asyncio
|
| 12 |
+
|
| 13 |
+
nest_asyncio.apply()
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
# Initialize app resources
|
| 17 |
+
st.set_page_config(page_title="StudyAssist", page_icon=":book:")
|
| 18 |
+
st.title("StudyAssist(pharmassist-v0)")
|
| 19 |
+
st.write(
|
| 20 |
+
"An AI/RAG application to aid students in their studies, specially optimized for the pharm 028 students. In simpler terms, chat with your pdf"
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@st.cache_resource
|
| 25 |
+
def initialize_resources():
|
| 26 |
+
llm_gemini = ChatGoogleGenerativeAI(
|
| 27 |
+
model="gemini-1.5-flash-latest", google_api_key=os.getenv("GOOGLE_API_KEY")
|
| 28 |
+
)
|
| 29 |
+
return llm_gemini
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def get_retriever(pdf_file):
|
| 33 |
+
with NamedTemporaryFile(suffix="pdf") as temp:
|
| 34 |
+
temp.write(pdf_file.getvalue())
|
| 35 |
+
pdf_loader = PyPDFLoader(temp.name, extract_images=True)
|
| 36 |
+
pages = pdf_loader.load()
|
| 37 |
+
|
| 38 |
+
st.write(f"AI Chatbot for {course_material}")
|
| 39 |
+
|
| 40 |
+
underlying_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 41 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 42 |
+
chunk_size=1000,
|
| 43 |
+
chunk_overlap=20,
|
| 44 |
+
length_function=len,
|
| 45 |
+
is_separator_regex=False,
|
| 46 |
+
separators="\n",
|
| 47 |
+
)
|
| 48 |
+
documents = text_splitter.split_documents(pages)
|
| 49 |
+
vectorstore = faiss.FAISS.from_documents(documents, underlying_embeddings)
|
| 50 |
+
doc_retiever = vectorstore.as_retriever(
|
| 51 |
+
search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10}
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
return doc_retiever
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
chat_model = initialize_resources()
|
| 58 |
+
|
| 59 |
+
# Streamlit UI
|
| 60 |
+
# Course list and pdf retrieval
|
| 61 |
+
|
| 62 |
+
courses = ["PMB", "PCL", "Kelechi_research"] # "GSP", "CPM", "PCG", "PCH"
|
| 63 |
+
course_pdfs = None
|
| 64 |
+
doc_retriever = None
|
| 65 |
+
conversational_chain = None
|
| 66 |
+
|
| 67 |
+
# course = st.sidebar.selectbox("Choose course", (courses))
|
| 68 |
+
# docs_path = f"pdfs/{course}"
|
| 69 |
+
# course_pdfs = os.listdir(docs_path)
|
| 70 |
+
# pdfs = [os.path.join(docs_path, pdf) for pdf in course_pdfs]
|
| 71 |
+
|
| 72 |
+
course_material = "{Not selected}"
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# @st.cache_resource
|
| 76 |
+
def query_response(query, _retriever):
|
| 77 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 78 |
+
conversational_chain = ConversationalRetrievalChain.from_llm(
|
| 79 |
+
llm=chat_model, retriever=_retriever, memory=memory, verbose=False
|
| 80 |
+
)
|
| 81 |
+
response = conversational_chain.run(query)
|
| 82 |
+
|
| 83 |
+
return response
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
if "doc" not in st.session_state:
|
| 87 |
+
st.session_state.doc = ""
|
| 88 |
+
|
| 89 |
+
course_material = st.file_uploader("or Upload your own pdf", type="pdf")
|
| 90 |
+
|
| 91 |
+
if st.session_state != "":
|
| 92 |
+
try:
|
| 93 |
+
doc_retriever = get_retriever(course_material)
|
| 94 |
+
st.success("File loading successful, vector db initialize")
|
| 95 |
+
except:
|
| 96 |
+
st.error("Upload your file")
|
| 97 |
+
|
| 98 |
+
# We store the conversation in the session state.
|
| 99 |
+
# This will be use to render the chat conversation.
|
| 100 |
+
# We initialize it with the first message we want to be greeted with.
|
| 101 |
+
if "messages" not in st.session_state:
|
| 102 |
+
st.session_state.messages = [
|
| 103 |
+
{"role": "assistant", "content": "Yoo, How far boss?"}
|
| 104 |
+
]
|
| 105 |
+
|
| 106 |
+
if "current_response" not in st.session_state:
|
| 107 |
+
st.session_state.current_response = ""
|
| 108 |
+
|
| 109 |
+
# We loop through each message in the session state and render it as
|
| 110 |
+
# a chat message.
|
| 111 |
+
for message in st.session_state.messages:
|
| 112 |
+
with st.chat_message(message["role"]):
|
| 113 |
+
st.markdown(message["content"])
|
| 114 |
+
|
| 115 |
+
# We take questions/instructions from the chat input to pass to the LLM
|
| 116 |
+
if user_prompt := st.chat_input("Your message here", key="user_input"):
|
| 117 |
+
# Add our input to the session state
|
| 118 |
+
st.session_state.messages.append({"role": "user", "content": user_prompt})
|
| 119 |
+
|
| 120 |
+
# Add our input to the chat window
|
| 121 |
+
with st.chat_message("user"):
|
| 122 |
+
st.markdown(user_prompt)
|
| 123 |
+
|
| 124 |
+
# Pass our input to the llm chain and capture the final responses.
|
| 125 |
+
# here once the llm has finished generating the complete response.
|
| 126 |
+
response = query_response(user_prompt, doc_retriever)
|
| 127 |
+
# Add the response to the session state
|
| 128 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 129 |
+
|
| 130 |
+
# Add the response to the chat window
|
| 131 |
+
with st.chat_message("assistant"):
|
| 132 |
+
st.markdown(response)
|
| 133 |
+
#
|
| 134 |
+
st.write("")
|
| 135 |
+
st.write("")
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
st.markdown(
|
| 139 |
+
"""
|
| 140 |
+
<div style="text-align: center; padding: 1rem;">
|
| 141 |
+
Project by <a href="https://github.com/kelechi-c" target="_blank" style="color: white; font-weight: bold; text-decoration: none;">
|
| 142 |
+
kelechi(tensor)</a>
|
| 143 |
+
</div>
|
| 144 |
+
""",
|
| 145 |
+
unsafe_allow_html=True,
|
| 146 |
+
)
|