Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -38,24 +38,24 @@ from spacy.lang.en.stop_words import STOP_WORDS | |
| 38 | 
             
            # Global cache for analysis results based on file hash
         | 
| 39 | 
             
            analysis_cache = {}
         | 
| 40 |  | 
| 41 | 
            -
            # Ensure compatibility with Google Colab
         | 
| 42 | 
             
            try:
         | 
| 43 | 
             
                from google.colab import drive
         | 
| 44 | 
             
                drive.mount('/content/drive')
         | 
| 45 | 
             
            except Exception:
         | 
| 46 | 
            -
                pass  # Not in Colab
         | 
| 47 |  | 
| 48 | 
            -
            #  | 
| 49 | 
             
            os.makedirs("static", exist_ok=True)
         | 
| 50 | 
             
            os.makedirs("temp", exist_ok=True)
         | 
| 51 |  | 
| 52 | 
             
            # Use GPU if available
         | 
| 53 | 
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 54 |  | 
| 55 | 
            -
            # FastAPI | 
| 56 | 
             
            app = FastAPI(title="Legal Document and Video Analyzer")
         | 
| 57 |  | 
| 58 | 
            -
            # CORS
         | 
| 59 | 
             
            app.add_middleware(
         | 
| 60 | 
             
                CORSMiddleware,
         | 
| 61 | 
             
                allow_origins=["*"],
         | 
| @@ -64,7 +64,7 @@ app.add_middleware( | |
| 64 | 
             
                allow_headers=["*"],
         | 
| 65 | 
             
            )
         | 
| 66 |  | 
| 67 | 
            -
            # In-memory storage
         | 
| 68 | 
             
            document_storage = {}
         | 
| 69 | 
             
            chat_history = []
         | 
| 70 |  | 
| @@ -79,14 +79,10 @@ def compute_md5(content: bytes) -> str: | |
| 79 | 
             
                return hashlib.md5(content).hexdigest()
         | 
| 80 |  | 
| 81 | 
             
            #############################
         | 
| 82 | 
            -
            #   Fine-tuning on CUAD QA | 
| 83 | 
             
            #############################
         | 
| 84 |  | 
| 85 | 
             
            def fine_tune_cuad_model():
         | 
| 86 | 
            -
                """
         | 
| 87 | 
            -
                Minimal stub for fine-tuning the CUAD QA model.
         | 
| 88 | 
            -
                If you have a full fine-tuning script, place it here.
         | 
| 89 | 
            -
                """
         | 
| 90 | 
             
                from datasets import load_dataset
         | 
| 91 | 
             
                from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering, AutoTokenizer
         | 
| 92 |  | 
| @@ -161,6 +157,7 @@ def fine_tune_cuad_model(): | |
| 161 | 
             
                                tokenized_examples["end_positions"].append(safe_end)
         | 
| 162 | 
             
                    return tokenized_examples
         | 
| 163 |  | 
|  | |
| 164 | 
             
                train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
         | 
| 165 | 
             
                val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
         | 
| 166 | 
             
                train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
         | 
| @@ -201,7 +198,7 @@ def fine_tune_cuad_model(): | |
| 201 | 
             
            #############################
         | 
| 202 |  | 
| 203 | 
             
            try:
         | 
| 204 | 
            -
                # Load  | 
| 205 | 
             
                try:
         | 
| 206 | 
             
                    nlp = spacy.load("en_core_web_sm")
         | 
| 207 | 
             
                except Exception:
         | 
| @@ -209,32 +206,29 @@ try: | |
| 209 | 
             
                    nlp = spacy.load("en_core_web_sm")
         | 
| 210 | 
             
                print("✅ Loaded spaCy model.")
         | 
| 211 |  | 
| 212 | 
            -
                #  | 
| 213 | 
             
                summarizer = pipeline(
         | 
| 214 | 
             
                    "summarization",
         | 
| 215 | 
             
                    model="facebook/bart-large-cnn",
         | 
| 216 | 
             
                    tokenizer="facebook/bart-large-cnn",
         | 
| 217 | 
             
                    device=0 if device == "cuda" else -1
         | 
| 218 | 
             
                )
         | 
| 219 | 
            -
             | 
| 220 | 
            -
                # QA pipeline (GPU)
         | 
| 221 | 
             
                qa_model = pipeline(
         | 
| 222 | 
             
                    "question-answering",
         | 
| 223 | 
             
                    model="deepset/roberta-base-squad2",
         | 
| 224 | 
             
                    device=0 if device == "cuda" else -1
         | 
| 225 | 
             
                )
         | 
| 226 |  | 
| 227 | 
            -
                #  | 
| 228 | 
             
                embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
         | 
| 229 |  | 
| 230 | 
            -
                # Named Entity Recognition (GPU)
         | 
| 231 | 
             
                ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if device == "cuda" else -1)
         | 
| 232 |  | 
| 233 | 
            -
                # Speech-to-text  | 
| 234 | 
             
                speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
         | 
| 235 | 
             
                                          device_map="auto" if device == "cuda" else None)
         | 
| 236 |  | 
| 237 | 
            -
                #  | 
| 238 | 
             
                if os.path.exists("fine_tuned_legal_qa"):
         | 
| 239 | 
             
                    print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
         | 
| 240 | 
             
                    cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
         | 
| @@ -242,11 +236,10 @@ try: | |
| 242 | 
             
                    cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
         | 
| 243 | 
             
                    cuad_model.to(device)
         | 
| 244 | 
             
                else:
         | 
| 245 | 
            -
                    print("⚠️ Fine-tuned QA model not found. Fine-tuning now (this may  | 
| 246 | 
             
                    cuad_tokenizer, cuad_model = fine_tune_cuad_model()
         | 
| 247 | 
             
                    cuad_model.to(device)
         | 
| 248 |  | 
| 249 | 
            -
                # Sentiment (GPU)
         | 
| 250 | 
             
                sentiment_pipeline = pipeline(
         | 
| 251 | 
             
                    "sentiment-analysis",
         | 
| 252 | 
             
                    model="distilbert-base-uncased-finetuned-sst-2-english",
         | 
| @@ -281,9 +274,6 @@ def extract_text_from_pdf(pdf_file): | |
| 281 | 
             
                    raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
         | 
| 282 |  | 
| 283 | 
             
            async def process_video_to_text(video_file_path):
         | 
| 284 | 
            -
                """
         | 
| 285 | 
            -
                Extracts audio from video and runs speech-to-text.
         | 
| 286 | 
            -
                """
         | 
| 287 | 
             
                try:
         | 
| 288 | 
             
                    print(f"Processing video file at {video_file_path}")
         | 
| 289 | 
             
                    temp_audio_path = os.path.join("temp", "extracted_audio.wav")
         | 
| @@ -305,9 +295,6 @@ async def process_video_to_text(video_file_path): | |
| 305 | 
             
                    raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
         | 
| 306 |  | 
| 307 | 
             
            async def process_audio_to_text(audio_file_path):
         | 
| 308 | 
            -
                """
         | 
| 309 | 
            -
                Runs speech-to-text on an audio file.
         | 
| 310 | 
            -
                """
         | 
| 311 | 
             
                try:
         | 
| 312 | 
             
                    print(f"Processing audio file at {audio_file_path}")
         | 
| 313 | 
             
                    result = await run_in_threadpool(speech_to_text, audio_file_path)
         | 
| @@ -319,9 +306,6 @@ async def process_audio_to_text(audio_file_path): | |
| 319 | 
             
                    raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
         | 
| 320 |  | 
| 321 | 
             
            def extract_named_entities(text):
         | 
| 322 | 
            -
                """
         | 
| 323 | 
            -
                Splits text into manageable chunks, runs spaCy for entity extraction.
         | 
| 324 | 
            -
                """
         | 
| 325 | 
             
                max_length = 10000
         | 
| 326 | 
             
                entities = []
         | 
| 327 | 
             
                for i in range(0, len(text), max_length):
         | 
| @@ -373,11 +357,9 @@ def explain_topics(topics): | |
| 373 | 
             
                                weight = float(weight_str)
         | 
| 374 | 
             
                            except:
         | 
| 375 | 
             
                                weight = 0.0
         | 
| 376 | 
            -
                            # Filter out short words & stop words
         | 
| 377 | 
             
                            if word.lower() not in STOP_WORDS and len(word) > 1:
         | 
| 378 | 
             
                                terms.append((weight, word))
         | 
| 379 | 
             
                    terms.sort(key=lambda x: -x[0])
         | 
| 380 | 
            -
                    # Heuristic labeling
         | 
| 381 | 
             
                    if terms:
         | 
| 382 | 
             
                        if any("liability" in w.lower() for _, w in terms):
         | 
| 383 | 
             
                            label = "Liability & Penalty Risk"
         | 
| @@ -419,20 +401,13 @@ def analyze_risk_enhanced(text): | |
| 419 | 
             
            #############################
         | 
| 420 |  | 
| 421 | 
             
            def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128):
         | 
| 422 | 
            -
                """
         | 
| 423 | 
            -
                Convert the entire text into tokens once, then create overlapping chunks
         | 
| 424 | 
            -
                of up to `max_chunk_len` tokens with overlap `stride`.
         | 
| 425 | 
            -
                """
         | 
| 426 | 
            -
                # Encode text once
         | 
| 427 | 
             
                encoded = tokenizer(text, add_special_tokens=False)
         | 
| 428 | 
             
                input_ids = encoded["input_ids"]
         | 
| 429 | 
            -
                # We'll create overlapping windows of tokens
         | 
| 430 | 
             
                chunks = []
         | 
| 431 | 
             
                idx = 0
         | 
| 432 | 
             
                while idx < len(input_ids):
         | 
| 433 | 
             
                    end = idx + max_chunk_len
         | 
| 434 | 
             
                    sub_ids = input_ids[idx:end]
         | 
| 435 | 
            -
                    # Convert back to text
         | 
| 436 | 
             
                    chunk_text = tokenizer.decode(sub_ids, skip_special_tokens=True)
         | 
| 437 | 
             
                    chunks.append(chunk_text)
         | 
| 438 | 
             
                    if end >= len(input_ids):
         | 
| @@ -443,13 +418,7 @@ def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128): | |
| 443 | 
             
                return chunks
         | 
| 444 |  | 
| 445 | 
             
            def analyze_contract_clauses(text):
         | 
| 446 | 
            -
                """
         | 
| 447 | 
            -
                Token-based chunking to avoid partial tokens.
         | 
| 448 | 
            -
                Each chunk is fed into the fine-tuned CUAD model on GPU.
         | 
| 449 | 
            -
                """
         | 
| 450 | 
            -
                # We'll break the text into chunks of up to 384 tokens, with a stride of 128
         | 
| 451 | 
             
                text_chunks = chunk_text_by_tokens(text, cuad_tokenizer, max_chunk_len=384, stride=128)
         | 
| 452 | 
            -
             | 
| 453 | 
             
                try:
         | 
| 454 | 
             
                    clause_types = list(cuad_model.config.id2label.values())
         | 
| 455 | 
             
                except Exception:
         | 
| @@ -459,7 +428,6 @@ def analyze_contract_clauses(text): | |
| 459 | 
             
                        "Assignment", "Warranty", "Limitation of Liability", "Arbitration",
         | 
| 460 | 
             
                        "IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
         | 
| 461 | 
             
                    ]
         | 
| 462 | 
            -
             | 
| 463 | 
             
                clauses_detected = []
         | 
| 464 |  | 
| 465 | 
             
                for chunk in text_chunks:
         | 
| @@ -467,26 +435,20 @@ def analyze_contract_clauses(text): | |
| 467 | 
             
                    if not chunk:
         | 
| 468 | 
             
                        continue
         | 
| 469 | 
             
                    try:
         | 
| 470 | 
            -
                        # Tokenize the chunk again for the model
         | 
| 471 | 
             
                        tokenized_inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
         | 
|  | |
| 472 | 
             
                        inputs = {k: v.to(device) for k, v in tokenized_inputs.items()}
         | 
| 473 | 
            -
                         | 
| 474 | 
             
                        if torch.any(inputs["input_ids"] >= cuad_model.config.vocab_size):
         | 
| 475 | 
             
                            print("Invalid token id found; skipping chunk")
         | 
| 476 | 
             
                            continue
         | 
| 477 | 
            -
             | 
| 478 | 
             
                        with torch.no_grad():
         | 
| 479 | 
             
                            outputs = cuad_model(**inputs)
         | 
| 480 | 
            -
                            # Force synchronization so that if there's a device error, we catch it here
         | 
| 481 | 
             
                            if device == "cuda":
         | 
| 482 | 
             
                                torch.cuda.synchronize()
         | 
| 483 | 
            -
             | 
| 484 | 
            -
                        # Shape check
         | 
| 485 | 
             
                        if outputs.start_logits.shape[1] != inputs["input_ids"].shape[1]:
         | 
| 486 | 
             
                            print("Mismatch in logits shape; skipping chunk")
         | 
| 487 | 
             
                            continue
         | 
| 488 | 
            -
             | 
| 489 | 
            -
                        # For demonstration, we just apply a threshold to the start_logits
         | 
| 490 | 
             
                        predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
         | 
| 491 | 
             
                        for idx, confidence in enumerate(predictions):
         | 
| 492 | 
             
                            if confidence > 0.5 and idx < len(clause_types):
         | 
| @@ -494,21 +456,17 @@ def analyze_contract_clauses(text): | |
| 494 | 
             
                                    "type": clause_types[idx],
         | 
| 495 | 
             
                                    "confidence": float(confidence)
         | 
| 496 | 
             
                                })
         | 
| 497 | 
            -
             | 
| 498 | 
             
                    except Exception as e:
         | 
| 499 | 
             
                        print(f"Error processing chunk: {e}")
         | 
| 500 | 
            -
                        # Clear GPU cache if there's an error
         | 
| 501 | 
             
                        if device == "cuda":
         | 
| 502 | 
             
                            torch.cuda.empty_cache()
         | 
| 503 | 
             
                        continue
         | 
| 504 |  | 
| 505 | 
            -
                # Aggregate clauses by their highest confidence
         | 
| 506 | 
             
                aggregated_clauses = {}
         | 
| 507 | 
             
                for clause in clauses_detected:
         | 
| 508 | 
             
                    ctype = clause["type"]
         | 
| 509 | 
             
                    if ctype not in aggregated_clauses or clause["confidence"] > aggregated_clauses[ctype]["confidence"]:
         | 
| 510 | 
             
                        aggregated_clauses[ctype] = clause
         | 
| 511 | 
            -
             | 
| 512 | 
             
                return list(aggregated_clauses.values())
         | 
| 513 |  | 
| 514 | 
             
            #############################
         | 
| @@ -517,24 +475,14 @@ def analyze_contract_clauses(text): | |
| 517 |  | 
| 518 | 
             
            @app.post("/analyze_legal_document")
         | 
| 519 | 
             
            async def analyze_legal_document(file: UploadFile = File(...)):
         | 
| 520 | 
            -
                """
         | 
| 521 | 
            -
                Analyze a legal document (PDF). Extract text, summarize, detect entities,
         | 
| 522 | 
            -
                do risk analysis, detect clauses, and store context for chat.
         | 
| 523 | 
            -
                """
         | 
| 524 | 
             
                try:
         | 
| 525 | 
             
                    content = await file.read()
         | 
| 526 | 
             
                    file_hash = compute_md5(content)
         | 
| 527 | 
            -
             | 
| 528 | 
            -
                    # Return cached result if we've already processed this file
         | 
| 529 | 
             
                    if file_hash in analysis_cache:
         | 
| 530 | 
             
                        return analysis_cache[file_hash]
         | 
| 531 | 
            -
             | 
| 532 | 
            -
                    # Extract text
         | 
| 533 | 
             
                    text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
         | 
| 534 | 
             
                    if not text:
         | 
| 535 | 
             
                        return {"status": "error", "message": "No valid text found in the document."}
         | 
| 536 | 
            -
             | 
| 537 | 
            -
                    # Summarize (handle short documents gracefully)
         | 
| 538 | 
             
                    summary_text = text[:4096] if len(text) > 4096 else text
         | 
| 539 | 
             
                    try:
         | 
| 540 | 
             
                        if len(text) > 100:
         | 
| @@ -544,20 +492,11 @@ async def analyze_legal_document(file: UploadFile = File(...)): | |
| 544 | 
             
                    except Exception as e:
         | 
| 545 | 
             
                        summary = "Summarization failed due to an error."
         | 
| 546 | 
             
                        print(f"Summarization error: {e}")
         | 
| 547 | 
            -
             | 
| 548 | 
            -
                    # Extract named entities
         | 
| 549 | 
             
                    entities = extract_named_entities(text)
         | 
| 550 | 
            -
             | 
| 551 | 
            -
                    # Analyze risk
         | 
| 552 | 
             
                    risk_analysis = analyze_risk_enhanced(text)
         | 
| 553 | 
            -
             | 
| 554 | 
            -
                    # Detect clauses
         | 
| 555 | 
             
                    clauses = analyze_contract_clauses(text)
         | 
| 556 | 
            -
             | 
| 557 | 
            -
                    # Store the document context for chatbot
         | 
| 558 | 
             
                    generated_task_id = str(uuid.uuid4())
         | 
| 559 | 
             
                    store_document_context(generated_task_id, text)
         | 
| 560 | 
            -
             | 
| 561 | 
             
                    result = {
         | 
| 562 | 
             
                        "status": "success",
         | 
| 563 | 
             
                        "task_id": generated_task_id,
         | 
| @@ -566,46 +505,29 @@ async def analyze_legal_document(file: UploadFile = File(...)): | |
| 566 | 
             
                        "risk_analysis": risk_analysis,
         | 
| 567 | 
             
                        "clauses_detected": clauses
         | 
| 568 | 
             
                    }
         | 
| 569 | 
            -
             | 
| 570 | 
            -
                    # Cache it
         | 
| 571 | 
             
                    analysis_cache[file_hash] = result
         | 
| 572 | 
             
                    return result
         | 
| 573 | 
            -
             | 
| 574 | 
             
                except Exception as e:
         | 
| 575 | 
             
                    return {"status": "error", "message": str(e)}
         | 
| 576 |  | 
| 577 | 
             
            @app.post("/analyze_legal_video")
         | 
| 578 | 
             
            async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
         | 
| 579 | 
            -
                """
         | 
| 580 | 
            -
                Analyze a legal video: transcribe, summarize, detect entities, risk analysis, etc.
         | 
| 581 | 
            -
                """
         | 
| 582 | 
             
                try:
         | 
| 583 | 
             
                    content = await file.read()
         | 
| 584 | 
             
                    file_hash = compute_md5(content)
         | 
| 585 | 
             
                    if file_hash in analysis_cache:
         | 
| 586 | 
             
                        return analysis_cache[file_hash]
         | 
| 587 | 
            -
             | 
| 588 | 
            -
                    # Save video temporarily
         | 
| 589 | 
             
                    with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
         | 
| 590 | 
             
                        temp_file.write(content)
         | 
| 591 | 
             
                        temp_file_path = temp_file.name
         | 
| 592 | 
            -
             | 
| 593 | 
            -
                    # Transcribe
         | 
| 594 | 
             
                    text = await process_video_to_text(temp_file_path)
         | 
| 595 | 
            -
             | 
| 596 | 
            -
                    # Cleanup
         | 
| 597 | 
             
                    if os.path.exists(temp_file_path):
         | 
| 598 | 
             
                        os.remove(temp_file_path)
         | 
| 599 | 
            -
             | 
| 600 | 
             
                    if not text:
         | 
| 601 | 
             
                        return {"status": "error", "message": "No speech could be transcribed from the video."}
         | 
| 602 | 
            -
             | 
| 603 | 
            -
                    # Save transcript
         | 
| 604 | 
             
                    transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
         | 
| 605 | 
             
                    with open(transcript_path, "w") as f:
         | 
| 606 | 
             
                        f.write(text)
         | 
| 607 | 
            -
             | 
| 608 | 
            -
                    # Summarize
         | 
| 609 | 
             
                    summary_text = text[:4096] if len(text) > 4096 else text
         | 
| 610 | 
             
                    try:
         | 
| 611 | 
             
                        if len(text) > 100:
         | 
| @@ -615,16 +537,11 @@ async def analyze_legal_video(file: UploadFile = File(...), background_tasks: Ba | |
| 615 | 
             
                    except Exception as e:
         | 
| 616 | 
             
                        summary = "Summarization failed due to an error."
         | 
| 617 | 
             
                        print(f"Summarization error: {e}")
         | 
| 618 | 
            -
             | 
| 619 | 
            -
                    # Entities, risk, clauses
         | 
| 620 | 
             
                    entities = extract_named_entities(text)
         | 
| 621 | 
             
                    risk_analysis = analyze_risk_enhanced(text)
         | 
| 622 | 
             
                    clauses = analyze_contract_clauses(text)
         | 
| 623 | 
            -
             | 
| 624 | 
            -
                    # Store context
         | 
| 625 | 
             
                    generated_task_id = str(uuid.uuid4())
         | 
| 626 | 
             
                    store_document_context(generated_task_id, text)
         | 
| 627 | 
            -
             | 
| 628 | 
             
                    result = {
         | 
| 629 | 
             
                        "status": "success",
         | 
| 630 | 
             
                        "task_id": generated_task_id,
         | 
| @@ -642,36 +559,22 @@ async def analyze_legal_video(file: UploadFile = File(...), background_tasks: Ba | |
| 642 |  | 
| 643 | 
             
            @app.post("/analyze_legal_audio")
         | 
| 644 | 
             
            async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
         | 
| 645 | 
            -
                """
         | 
| 646 | 
            -
                Analyze an audio file: transcribe, summarize, detect entities, risk analysis, etc.
         | 
| 647 | 
            -
                """
         | 
| 648 | 
             
                try:
         | 
| 649 | 
             
                    content = await file.read()
         | 
| 650 | 
             
                    file_hash = compute_md5(content)
         | 
| 651 | 
             
                    if file_hash in analysis_cache:
         | 
| 652 | 
             
                        return analysis_cache[file_hash]
         | 
| 653 | 
            -
             | 
| 654 | 
            -
                    # Save audio temporarily
         | 
| 655 | 
             
                    with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
         | 
| 656 | 
             
                        temp_file.write(content)
         | 
| 657 | 
             
                        temp_file_path = temp_file.name
         | 
| 658 | 
            -
             | 
| 659 | 
            -
                    # Transcribe
         | 
| 660 | 
             
                    text = await process_audio_to_text(temp_file_path)
         | 
| 661 | 
            -
             | 
| 662 | 
            -
                    # Cleanup
         | 
| 663 | 
             
                    if os.path.exists(temp_file_path):
         | 
| 664 | 
             
                        os.remove(temp_file_path)
         | 
| 665 | 
            -
             | 
| 666 | 
             
                    if not text:
         | 
| 667 | 
             
                        return {"status": "error", "message": "No speech could be transcribed from the audio."}
         | 
| 668 | 
            -
             | 
| 669 | 
            -
                    # Save transcript
         | 
| 670 | 
             
                    transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
         | 
| 671 | 
             
                    with open(transcript_path, "w") as f:
         | 
| 672 | 
             
                        f.write(text)
         | 
| 673 | 
            -
             | 
| 674 | 
            -
                    # Summarize
         | 
| 675 | 
             
                    summary_text = text[:4096] if len(text) > 4096 else text
         | 
| 676 | 
             
                    try:
         | 
| 677 | 
             
                        if len(text) > 100:
         | 
| @@ -681,16 +584,11 @@ async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: Ba | |
| 681 | 
             
                    except Exception as e:
         | 
| 682 | 
             
                        summary = "Summarization failed due to an error."
         | 
| 683 | 
             
                        print(f"Summarization error: {e}")
         | 
| 684 | 
            -
             | 
| 685 | 
            -
                    # Entities, risk, clauses
         | 
| 686 | 
             
                    entities = extract_named_entities(text)
         | 
| 687 | 
             
                    risk_analysis = analyze_risk_enhanced(text)
         | 
| 688 | 
             
                    clauses = analyze_contract_clauses(text)
         | 
| 689 | 
            -
             | 
| 690 | 
            -
                    # Store context
         | 
| 691 | 
             
                    generated_task_id = str(uuid.uuid4())
         | 
| 692 | 
             
                    store_document_context(generated_task_id, text)
         | 
| 693 | 
            -
             | 
| 694 | 
             
                    result = {
         | 
| 695 | 
             
                        "status": "success",
         | 
| 696 | 
             
                        "task_id": generated_task_id,
         | 
| @@ -716,9 +614,6 @@ async def get_transcript(transcript_id: str): | |
| 716 |  | 
| 717 | 
             
            @app.post("/legal_chatbot")
         | 
| 718 | 
             
            async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
         | 
| 719 | 
            -
                """
         | 
| 720 | 
            -
                Simple QA pipeline on the stored document context.
         | 
| 721 | 
            -
                """
         | 
| 722 | 
             
                document_context = load_document_context(task_id)
         | 
| 723 | 
             
                if not document_context:
         | 
| 724 | 
             
                    return {"response": "⚠️ No relevant document found for this task ID."}
         | 
| @@ -762,7 +657,6 @@ def setup_ngrok(): | |
| 762 | 
             
                    print(f"⚠️ Ngrok setup error: {e}")
         | 
| 763 | 
             
                    return None
         | 
| 764 |  | 
| 765 | 
            -
            # Visualization endpoints
         | 
| 766 | 
             
            @app.get("/download_clause_bar_chart")
         | 
| 767 | 
             
            async def download_clause_bar_chart(task_id: str):
         | 
| 768 | 
             
                try:
         | 
| @@ -826,7 +720,6 @@ async def download_clause_radar_chart(task_id: str): | |
| 826 | 
             
                        raise HTTPException(status_code=404, detail="No clauses detected.")
         | 
| 827 | 
             
                    labels = [c["type"] for c in clauses]
         | 
| 828 | 
             
                    values = [c["confidence"] for c in clauses]
         | 
| 829 | 
            -
                    # close the loop for radar
         | 
| 830 | 
             
                    labels += labels[:1]
         | 
| 831 | 
             
                    values += values[:1]
         | 
| 832 | 
             
                    angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
         | 
| @@ -854,4 +747,3 @@ if __name__ == "__main__": | |
| 854 | 
             
                else:
         | 
| 855 | 
             
                    print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
         | 
| 856 | 
             
                run()
         | 
| 857 | 
            -
             | 
|  | |
| 38 | 
             
            # Global cache for analysis results based on file hash
         | 
| 39 | 
             
            analysis_cache = {}
         | 
| 40 |  | 
| 41 | 
            +
            # Ensure compatibility with Google Colab (if applicable)
         | 
| 42 | 
             
            try:
         | 
| 43 | 
             
                from google.colab import drive
         | 
| 44 | 
             
                drive.mount('/content/drive')
         | 
| 45 | 
             
            except Exception:
         | 
| 46 | 
            +
                pass  # Not running in Colab
         | 
| 47 |  | 
| 48 | 
            +
            # Ensure required directories exist
         | 
| 49 | 
             
            os.makedirs("static", exist_ok=True)
         | 
| 50 | 
             
            os.makedirs("temp", exist_ok=True)
         | 
| 51 |  | 
| 52 | 
             
            # Use GPU if available
         | 
| 53 | 
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 54 |  | 
| 55 | 
            +
            # Initialize FastAPI
         | 
| 56 | 
             
            app = FastAPI(title="Legal Document and Video Analyzer")
         | 
| 57 |  | 
| 58 | 
            +
            # Add CORS middleware
         | 
| 59 | 
             
            app.add_middleware(
         | 
| 60 | 
             
                CORSMiddleware,
         | 
| 61 | 
             
                allow_origins=["*"],
         | 
|  | |
| 64 | 
             
                allow_headers=["*"],
         | 
| 65 | 
             
            )
         | 
| 66 |  | 
| 67 | 
            +
            # In-memory storage for document text and chat history
         | 
| 68 | 
             
            document_storage = {}
         | 
| 69 | 
             
            chat_history = []
         | 
| 70 |  | 
|  | |
| 79 | 
             
                return hashlib.md5(content).hexdigest()
         | 
| 80 |  | 
| 81 | 
             
            #############################
         | 
| 82 | 
            +
            #   Fine-tuning on CUAD QA   #
         | 
| 83 | 
             
            #############################
         | 
| 84 |  | 
| 85 | 
             
            def fine_tune_cuad_model():
         | 
|  | |
|  | |
|  | |
|  | |
| 86 | 
             
                from datasets import load_dataset
         | 
| 87 | 
             
                from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering, AutoTokenizer
         | 
| 88 |  | 
|  | |
| 157 | 
             
                                tokenized_examples["end_positions"].append(safe_end)
         | 
| 158 | 
             
                    return tokenized_examples
         | 
| 159 |  | 
| 160 | 
            +
                print("✅ Tokenizing dataset...")
         | 
| 161 | 
             
                train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
         | 
| 162 | 
             
                val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
         | 
| 163 | 
             
                train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
         | 
|  | |
| 198 | 
             
            #############################
         | 
| 199 |  | 
| 200 | 
             
            try:
         | 
| 201 | 
            +
                # Load spaCy model
         | 
| 202 | 
             
                try:
         | 
| 203 | 
             
                    nlp = spacy.load("en_core_web_sm")
         | 
| 204 | 
             
                except Exception:
         | 
|  | |
| 206 | 
             
                    nlp = spacy.load("en_core_web_sm")
         | 
| 207 | 
             
                print("✅ Loaded spaCy model.")
         | 
| 208 |  | 
| 209 | 
            +
                # Create summarizer and QA pipelines on GPU
         | 
| 210 | 
             
                summarizer = pipeline(
         | 
| 211 | 
             
                    "summarization",
         | 
| 212 | 
             
                    model="facebook/bart-large-cnn",
         | 
| 213 | 
             
                    tokenizer="facebook/bart-large-cnn",
         | 
| 214 | 
             
                    device=0 if device == "cuda" else -1
         | 
| 215 | 
             
                )
         | 
|  | |
|  | |
| 216 | 
             
                qa_model = pipeline(
         | 
| 217 | 
             
                    "question-answering",
         | 
| 218 | 
             
                    model="deepset/roberta-base-squad2",
         | 
| 219 | 
             
                    device=0 if device == "cuda" else -1
         | 
| 220 | 
             
                )
         | 
| 221 |  | 
| 222 | 
            +
                # Use GPU for sentence embeddings if available
         | 
| 223 | 
             
                embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
         | 
| 224 |  | 
|  | |
| 225 | 
             
                ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if device == "cuda" else -1)
         | 
| 226 |  | 
| 227 | 
            +
                # Speech-to-text pipeline on GPU (if available)
         | 
| 228 | 
             
                speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
         | 
| 229 | 
             
                                          device_map="auto" if device == "cuda" else None)
         | 
| 230 |  | 
| 231 | 
            +
                # Load or fine-tune the CUAD QA model and move to GPU
         | 
| 232 | 
             
                if os.path.exists("fine_tuned_legal_qa"):
         | 
| 233 | 
             
                    print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
         | 
| 234 | 
             
                    cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
         | 
|  | |
| 236 | 
             
                    cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
         | 
| 237 | 
             
                    cuad_model.to(device)
         | 
| 238 | 
             
                else:
         | 
| 239 | 
            +
                    print("⚠️ Fine-tuned QA model not found. Fine-tuning now (this may take a while)...")
         | 
| 240 | 
             
                    cuad_tokenizer, cuad_model = fine_tune_cuad_model()
         | 
| 241 | 
             
                    cuad_model.to(device)
         | 
| 242 |  | 
|  | |
| 243 | 
             
                sentiment_pipeline = pipeline(
         | 
| 244 | 
             
                    "sentiment-analysis",
         | 
| 245 | 
             
                    model="distilbert-base-uncased-finetuned-sst-2-english",
         | 
|  | |
| 274 | 
             
                    raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
         | 
| 275 |  | 
| 276 | 
             
            async def process_video_to_text(video_file_path):
         | 
|  | |
|  | |
|  | |
| 277 | 
             
                try:
         | 
| 278 | 
             
                    print(f"Processing video file at {video_file_path}")
         | 
| 279 | 
             
                    temp_audio_path = os.path.join("temp", "extracted_audio.wav")
         | 
|  | |
| 295 | 
             
                    raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
         | 
| 296 |  | 
| 297 | 
             
            async def process_audio_to_text(audio_file_path):
         | 
|  | |
|  | |
|  | |
| 298 | 
             
                try:
         | 
| 299 | 
             
                    print(f"Processing audio file at {audio_file_path}")
         | 
| 300 | 
             
                    result = await run_in_threadpool(speech_to_text, audio_file_path)
         | 
|  | |
| 306 | 
             
                    raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
         | 
| 307 |  | 
| 308 | 
             
            def extract_named_entities(text):
         | 
|  | |
|  | |
|  | |
| 309 | 
             
                max_length = 10000
         | 
| 310 | 
             
                entities = []
         | 
| 311 | 
             
                for i in range(0, len(text), max_length):
         | 
|  | |
| 357 | 
             
                                weight = float(weight_str)
         | 
| 358 | 
             
                            except:
         | 
| 359 | 
             
                                weight = 0.0
         | 
|  | |
| 360 | 
             
                            if word.lower() not in STOP_WORDS and len(word) > 1:
         | 
| 361 | 
             
                                terms.append((weight, word))
         | 
| 362 | 
             
                    terms.sort(key=lambda x: -x[0])
         | 
|  | |
| 363 | 
             
                    if terms:
         | 
| 364 | 
             
                        if any("liability" in w.lower() for _, w in terms):
         | 
| 365 | 
             
                            label = "Liability & Penalty Risk"
         | 
|  | |
| 401 | 
             
            #############################
         | 
| 402 |  | 
| 403 | 
             
            def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 404 | 
             
                encoded = tokenizer(text, add_special_tokens=False)
         | 
| 405 | 
             
                input_ids = encoded["input_ids"]
         | 
|  | |
| 406 | 
             
                chunks = []
         | 
| 407 | 
             
                idx = 0
         | 
| 408 | 
             
                while idx < len(input_ids):
         | 
| 409 | 
             
                    end = idx + max_chunk_len
         | 
| 410 | 
             
                    sub_ids = input_ids[idx:end]
         | 
|  | |
| 411 | 
             
                    chunk_text = tokenizer.decode(sub_ids, skip_special_tokens=True)
         | 
| 412 | 
             
                    chunks.append(chunk_text)
         | 
| 413 | 
             
                    if end >= len(input_ids):
         | 
|  | |
| 418 | 
             
                return chunks
         | 
| 419 |  | 
| 420 | 
             
            def analyze_contract_clauses(text):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 421 | 
             
                text_chunks = chunk_text_by_tokens(text, cuad_tokenizer, max_chunk_len=384, stride=128)
         | 
|  | |
| 422 | 
             
                try:
         | 
| 423 | 
             
                    clause_types = list(cuad_model.config.id2label.values())
         | 
| 424 | 
             
                except Exception:
         | 
|  | |
| 428 | 
             
                        "Assignment", "Warranty", "Limitation of Liability", "Arbitration",
         | 
| 429 | 
             
                        "IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
         | 
| 430 | 
             
                    ]
         | 
|  | |
| 431 | 
             
                clauses_detected = []
         | 
| 432 |  | 
| 433 | 
             
                for chunk in text_chunks:
         | 
|  | |
| 435 | 
             
                    if not chunk:
         | 
| 436 | 
             
                        continue
         | 
| 437 | 
             
                    try:
         | 
|  | |
| 438 | 
             
                        tokenized_inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
         | 
| 439 | 
            +
                        # Move to GPU and clamp token IDs to ensure they are within valid range
         | 
| 440 | 
             
                        inputs = {k: v.to(device) for k, v in tokenized_inputs.items()}
         | 
| 441 | 
            +
                        inputs["input_ids"] = torch.clamp(inputs["input_ids"], max=cuad_model.config.vocab_size - 1)
         | 
| 442 | 
             
                        if torch.any(inputs["input_ids"] >= cuad_model.config.vocab_size):
         | 
| 443 | 
             
                            print("Invalid token id found; skipping chunk")
         | 
| 444 | 
             
                            continue
         | 
|  | |
| 445 | 
             
                        with torch.no_grad():
         | 
| 446 | 
             
                            outputs = cuad_model(**inputs)
         | 
|  | |
| 447 | 
             
                            if device == "cuda":
         | 
| 448 | 
             
                                torch.cuda.synchronize()
         | 
|  | |
|  | |
| 449 | 
             
                        if outputs.start_logits.shape[1] != inputs["input_ids"].shape[1]:
         | 
| 450 | 
             
                            print("Mismatch in logits shape; skipping chunk")
         | 
| 451 | 
             
                            continue
         | 
|  | |
|  | |
| 452 | 
             
                        predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
         | 
| 453 | 
             
                        for idx, confidence in enumerate(predictions):
         | 
| 454 | 
             
                            if confidence > 0.5 and idx < len(clause_types):
         | 
|  | |
| 456 | 
             
                                    "type": clause_types[idx],
         | 
| 457 | 
             
                                    "confidence": float(confidence)
         | 
| 458 | 
             
                                })
         | 
|  | |
| 459 | 
             
                    except Exception as e:
         | 
| 460 | 
             
                        print(f"Error processing chunk: {e}")
         | 
|  | |
| 461 | 
             
                        if device == "cuda":
         | 
| 462 | 
             
                            torch.cuda.empty_cache()
         | 
| 463 | 
             
                        continue
         | 
| 464 |  | 
|  | |
| 465 | 
             
                aggregated_clauses = {}
         | 
| 466 | 
             
                for clause in clauses_detected:
         | 
| 467 | 
             
                    ctype = clause["type"]
         | 
| 468 | 
             
                    if ctype not in aggregated_clauses or clause["confidence"] > aggregated_clauses[ctype]["confidence"]:
         | 
| 469 | 
             
                        aggregated_clauses[ctype] = clause
         | 
|  | |
| 470 | 
             
                return list(aggregated_clauses.values())
         | 
| 471 |  | 
| 472 | 
             
            #############################
         | 
|  | |
| 475 |  | 
| 476 | 
             
            @app.post("/analyze_legal_document")
         | 
| 477 | 
             
            async def analyze_legal_document(file: UploadFile = File(...)):
         | 
|  | |
|  | |
|  | |
|  | |
| 478 | 
             
                try:
         | 
| 479 | 
             
                    content = await file.read()
         | 
| 480 | 
             
                    file_hash = compute_md5(content)
         | 
|  | |
|  | |
| 481 | 
             
                    if file_hash in analysis_cache:
         | 
| 482 | 
             
                        return analysis_cache[file_hash]
         | 
|  | |
|  | |
| 483 | 
             
                    text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
         | 
| 484 | 
             
                    if not text:
         | 
| 485 | 
             
                        return {"status": "error", "message": "No valid text found in the document."}
         | 
|  | |
|  | |
| 486 | 
             
                    summary_text = text[:4096] if len(text) > 4096 else text
         | 
| 487 | 
             
                    try:
         | 
| 488 | 
             
                        if len(text) > 100:
         | 
|  | |
| 492 | 
             
                    except Exception as e:
         | 
| 493 | 
             
                        summary = "Summarization failed due to an error."
         | 
| 494 | 
             
                        print(f"Summarization error: {e}")
         | 
|  | |
|  | |
| 495 | 
             
                    entities = extract_named_entities(text)
         | 
|  | |
|  | |
| 496 | 
             
                    risk_analysis = analyze_risk_enhanced(text)
         | 
|  | |
|  | |
| 497 | 
             
                    clauses = analyze_contract_clauses(text)
         | 
|  | |
|  | |
| 498 | 
             
                    generated_task_id = str(uuid.uuid4())
         | 
| 499 | 
             
                    store_document_context(generated_task_id, text)
         | 
|  | |
| 500 | 
             
                    result = {
         | 
| 501 | 
             
                        "status": "success",
         | 
| 502 | 
             
                        "task_id": generated_task_id,
         | 
|  | |
| 505 | 
             
                        "risk_analysis": risk_analysis,
         | 
| 506 | 
             
                        "clauses_detected": clauses
         | 
| 507 | 
             
                    }
         | 
|  | |
|  | |
| 508 | 
             
                    analysis_cache[file_hash] = result
         | 
| 509 | 
             
                    return result
         | 
|  | |
| 510 | 
             
                except Exception as e:
         | 
| 511 | 
             
                    return {"status": "error", "message": str(e)}
         | 
| 512 |  | 
| 513 | 
             
            @app.post("/analyze_legal_video")
         | 
| 514 | 
             
            async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
         | 
|  | |
|  | |
|  | |
| 515 | 
             
                try:
         | 
| 516 | 
             
                    content = await file.read()
         | 
| 517 | 
             
                    file_hash = compute_md5(content)
         | 
| 518 | 
             
                    if file_hash in analysis_cache:
         | 
| 519 | 
             
                        return analysis_cache[file_hash]
         | 
|  | |
|  | |
| 520 | 
             
                    with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
         | 
| 521 | 
             
                        temp_file.write(content)
         | 
| 522 | 
             
                        temp_file_path = temp_file.name
         | 
|  | |
|  | |
| 523 | 
             
                    text = await process_video_to_text(temp_file_path)
         | 
|  | |
|  | |
| 524 | 
             
                    if os.path.exists(temp_file_path):
         | 
| 525 | 
             
                        os.remove(temp_file_path)
         | 
|  | |
| 526 | 
             
                    if not text:
         | 
| 527 | 
             
                        return {"status": "error", "message": "No speech could be transcribed from the video."}
         | 
|  | |
|  | |
| 528 | 
             
                    transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
         | 
| 529 | 
             
                    with open(transcript_path, "w") as f:
         | 
| 530 | 
             
                        f.write(text)
         | 
|  | |
|  | |
| 531 | 
             
                    summary_text = text[:4096] if len(text) > 4096 else text
         | 
| 532 | 
             
                    try:
         | 
| 533 | 
             
                        if len(text) > 100:
         | 
|  | |
| 537 | 
             
                    except Exception as e:
         | 
| 538 | 
             
                        summary = "Summarization failed due to an error."
         | 
| 539 | 
             
                        print(f"Summarization error: {e}")
         | 
|  | |
|  | |
| 540 | 
             
                    entities = extract_named_entities(text)
         | 
| 541 | 
             
                    risk_analysis = analyze_risk_enhanced(text)
         | 
| 542 | 
             
                    clauses = analyze_contract_clauses(text)
         | 
|  | |
|  | |
| 543 | 
             
                    generated_task_id = str(uuid.uuid4())
         | 
| 544 | 
             
                    store_document_context(generated_task_id, text)
         | 
|  | |
| 545 | 
             
                    result = {
         | 
| 546 | 
             
                        "status": "success",
         | 
| 547 | 
             
                        "task_id": generated_task_id,
         | 
|  | |
| 559 |  | 
| 560 | 
             
            @app.post("/analyze_legal_audio")
         | 
| 561 | 
             
            async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
         | 
|  | |
|  | |
|  | |
| 562 | 
             
                try:
         | 
| 563 | 
             
                    content = await file.read()
         | 
| 564 | 
             
                    file_hash = compute_md5(content)
         | 
| 565 | 
             
                    if file_hash in analysis_cache:
         | 
| 566 | 
             
                        return analysis_cache[file_hash]
         | 
|  | |
|  | |
| 567 | 
             
                    with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
         | 
| 568 | 
             
                        temp_file.write(content)
         | 
| 569 | 
             
                        temp_file_path = temp_file.name
         | 
|  | |
|  | |
| 570 | 
             
                    text = await process_audio_to_text(temp_file_path)
         | 
|  | |
|  | |
| 571 | 
             
                    if os.path.exists(temp_file_path):
         | 
| 572 | 
             
                        os.remove(temp_file_path)
         | 
|  | |
| 573 | 
             
                    if not text:
         | 
| 574 | 
             
                        return {"status": "error", "message": "No speech could be transcribed from the audio."}
         | 
|  | |
|  | |
| 575 | 
             
                    transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
         | 
| 576 | 
             
                    with open(transcript_path, "w") as f:
         | 
| 577 | 
             
                        f.write(text)
         | 
|  | |
|  | |
| 578 | 
             
                    summary_text = text[:4096] if len(text) > 4096 else text
         | 
| 579 | 
             
                    try:
         | 
| 580 | 
             
                        if len(text) > 100:
         | 
|  | |
| 584 | 
             
                    except Exception as e:
         | 
| 585 | 
             
                        summary = "Summarization failed due to an error."
         | 
| 586 | 
             
                        print(f"Summarization error: {e}")
         | 
|  | |
|  | |
| 587 | 
             
                    entities = extract_named_entities(text)
         | 
| 588 | 
             
                    risk_analysis = analyze_risk_enhanced(text)
         | 
| 589 | 
             
                    clauses = analyze_contract_clauses(text)
         | 
|  | |
|  | |
| 590 | 
             
                    generated_task_id = str(uuid.uuid4())
         | 
| 591 | 
             
                    store_document_context(generated_task_id, text)
         | 
|  | |
| 592 | 
             
                    result = {
         | 
| 593 | 
             
                        "status": "success",
         | 
| 594 | 
             
                        "task_id": generated_task_id,
         | 
|  | |
| 614 |  | 
| 615 | 
             
            @app.post("/legal_chatbot")
         | 
| 616 | 
             
            async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
         | 
|  | |
|  | |
|  | |
| 617 | 
             
                document_context = load_document_context(task_id)
         | 
| 618 | 
             
                if not document_context:
         | 
| 619 | 
             
                    return {"response": "⚠️ No relevant document found for this task ID."}
         | 
|  | |
| 657 | 
             
                    print(f"⚠️ Ngrok setup error: {e}")
         | 
| 658 | 
             
                    return None
         | 
| 659 |  | 
|  | |
| 660 | 
             
            @app.get("/download_clause_bar_chart")
         | 
| 661 | 
             
            async def download_clause_bar_chart(task_id: str):
         | 
| 662 | 
             
                try:
         | 
|  | |
| 720 | 
             
                        raise HTTPException(status_code=404, detail="No clauses detected.")
         | 
| 721 | 
             
                    labels = [c["type"] for c in clauses]
         | 
| 722 | 
             
                    values = [c["confidence"] for c in clauses]
         | 
|  | |
| 723 | 
             
                    labels += labels[:1]
         | 
| 724 | 
             
                    values += values[:1]
         | 
| 725 | 
             
                    angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
         | 
|  | |
| 747 | 
             
                else:
         | 
| 748 | 
             
                    print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
         | 
| 749 | 
             
                run()
         | 
|  |