Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,24 +38,24 @@ from spacy.lang.en.stop_words import STOP_WORDS
|
|
| 38 |
# Global cache for analysis results based on file hash
|
| 39 |
analysis_cache = {}
|
| 40 |
|
| 41 |
-
# Ensure compatibility with Google Colab
|
| 42 |
try:
|
| 43 |
from google.colab import drive
|
| 44 |
drive.mount('/content/drive')
|
| 45 |
except Exception:
|
| 46 |
-
pass # Not in Colab
|
| 47 |
|
| 48 |
-
#
|
| 49 |
os.makedirs("static", exist_ok=True)
|
| 50 |
os.makedirs("temp", exist_ok=True)
|
| 51 |
|
| 52 |
# Use GPU if available
|
| 53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
|
| 55 |
-
# FastAPI
|
| 56 |
app = FastAPI(title="Legal Document and Video Analyzer")
|
| 57 |
|
| 58 |
-
# CORS
|
| 59 |
app.add_middleware(
|
| 60 |
CORSMiddleware,
|
| 61 |
allow_origins=["*"],
|
|
@@ -64,7 +64,7 @@ app.add_middleware(
|
|
| 64 |
allow_headers=["*"],
|
| 65 |
)
|
| 66 |
|
| 67 |
-
# In-memory storage
|
| 68 |
document_storage = {}
|
| 69 |
chat_history = []
|
| 70 |
|
|
@@ -79,14 +79,10 @@ def compute_md5(content: bytes) -> str:
|
|
| 79 |
return hashlib.md5(content).hexdigest()
|
| 80 |
|
| 81 |
#############################
|
| 82 |
-
# Fine-tuning on CUAD QA
|
| 83 |
#############################
|
| 84 |
|
| 85 |
def fine_tune_cuad_model():
|
| 86 |
-
"""
|
| 87 |
-
Minimal stub for fine-tuning the CUAD QA model.
|
| 88 |
-
If you have a full fine-tuning script, place it here.
|
| 89 |
-
"""
|
| 90 |
from datasets import load_dataset
|
| 91 |
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering, AutoTokenizer
|
| 92 |
|
|
@@ -161,6 +157,7 @@ def fine_tune_cuad_model():
|
|
| 161 |
tokenized_examples["end_positions"].append(safe_end)
|
| 162 |
return tokenized_examples
|
| 163 |
|
|
|
|
| 164 |
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
|
| 165 |
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
|
| 166 |
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
|
@@ -201,7 +198,7 @@ def fine_tune_cuad_model():
|
|
| 201 |
#############################
|
| 202 |
|
| 203 |
try:
|
| 204 |
-
# Load
|
| 205 |
try:
|
| 206 |
nlp = spacy.load("en_core_web_sm")
|
| 207 |
except Exception:
|
|
@@ -209,32 +206,29 @@ try:
|
|
| 209 |
nlp = spacy.load("en_core_web_sm")
|
| 210 |
print("✅ Loaded spaCy model.")
|
| 211 |
|
| 212 |
-
#
|
| 213 |
summarizer = pipeline(
|
| 214 |
"summarization",
|
| 215 |
model="facebook/bart-large-cnn",
|
| 216 |
tokenizer="facebook/bart-large-cnn",
|
| 217 |
device=0 if device == "cuda" else -1
|
| 218 |
)
|
| 219 |
-
|
| 220 |
-
# QA pipeline (GPU)
|
| 221 |
qa_model = pipeline(
|
| 222 |
"question-answering",
|
| 223 |
model="deepset/roberta-base-squad2",
|
| 224 |
device=0 if device == "cuda" else -1
|
| 225 |
)
|
| 226 |
|
| 227 |
-
#
|
| 228 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
| 229 |
|
| 230 |
-
# Named Entity Recognition (GPU)
|
| 231 |
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if device == "cuda" else -1)
|
| 232 |
|
| 233 |
-
# Speech-to-text
|
| 234 |
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
|
| 235 |
device_map="auto" if device == "cuda" else None)
|
| 236 |
|
| 237 |
-
#
|
| 238 |
if os.path.exists("fine_tuned_legal_qa"):
|
| 239 |
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
|
| 240 |
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
|
|
@@ -242,11 +236,10 @@ try:
|
|
| 242 |
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
|
| 243 |
cuad_model.to(device)
|
| 244 |
else:
|
| 245 |
-
print("⚠️ Fine-tuned QA model not found. Fine-tuning now (this may
|
| 246 |
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
|
| 247 |
cuad_model.to(device)
|
| 248 |
|
| 249 |
-
# Sentiment (GPU)
|
| 250 |
sentiment_pipeline = pipeline(
|
| 251 |
"sentiment-analysis",
|
| 252 |
model="distilbert-base-uncased-finetuned-sst-2-english",
|
|
@@ -281,9 +274,6 @@ def extract_text_from_pdf(pdf_file):
|
|
| 281 |
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
| 282 |
|
| 283 |
async def process_video_to_text(video_file_path):
|
| 284 |
-
"""
|
| 285 |
-
Extracts audio from video and runs speech-to-text.
|
| 286 |
-
"""
|
| 287 |
try:
|
| 288 |
print(f"Processing video file at {video_file_path}")
|
| 289 |
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
|
@@ -305,9 +295,6 @@ async def process_video_to_text(video_file_path):
|
|
| 305 |
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
|
| 306 |
|
| 307 |
async def process_audio_to_text(audio_file_path):
|
| 308 |
-
"""
|
| 309 |
-
Runs speech-to-text on an audio file.
|
| 310 |
-
"""
|
| 311 |
try:
|
| 312 |
print(f"Processing audio file at {audio_file_path}")
|
| 313 |
result = await run_in_threadpool(speech_to_text, audio_file_path)
|
|
@@ -319,9 +306,6 @@ async def process_audio_to_text(audio_file_path):
|
|
| 319 |
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
|
| 320 |
|
| 321 |
def extract_named_entities(text):
|
| 322 |
-
"""
|
| 323 |
-
Splits text into manageable chunks, runs spaCy for entity extraction.
|
| 324 |
-
"""
|
| 325 |
max_length = 10000
|
| 326 |
entities = []
|
| 327 |
for i in range(0, len(text), max_length):
|
|
@@ -373,11 +357,9 @@ def explain_topics(topics):
|
|
| 373 |
weight = float(weight_str)
|
| 374 |
except:
|
| 375 |
weight = 0.0
|
| 376 |
-
# Filter out short words & stop words
|
| 377 |
if word.lower() not in STOP_WORDS and len(word) > 1:
|
| 378 |
terms.append((weight, word))
|
| 379 |
terms.sort(key=lambda x: -x[0])
|
| 380 |
-
# Heuristic labeling
|
| 381 |
if terms:
|
| 382 |
if any("liability" in w.lower() for _, w in terms):
|
| 383 |
label = "Liability & Penalty Risk"
|
|
@@ -419,20 +401,13 @@ def analyze_risk_enhanced(text):
|
|
| 419 |
#############################
|
| 420 |
|
| 421 |
def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128):
|
| 422 |
-
"""
|
| 423 |
-
Convert the entire text into tokens once, then create overlapping chunks
|
| 424 |
-
of up to `max_chunk_len` tokens with overlap `stride`.
|
| 425 |
-
"""
|
| 426 |
-
# Encode text once
|
| 427 |
encoded = tokenizer(text, add_special_tokens=False)
|
| 428 |
input_ids = encoded["input_ids"]
|
| 429 |
-
# We'll create overlapping windows of tokens
|
| 430 |
chunks = []
|
| 431 |
idx = 0
|
| 432 |
while idx < len(input_ids):
|
| 433 |
end = idx + max_chunk_len
|
| 434 |
sub_ids = input_ids[idx:end]
|
| 435 |
-
# Convert back to text
|
| 436 |
chunk_text = tokenizer.decode(sub_ids, skip_special_tokens=True)
|
| 437 |
chunks.append(chunk_text)
|
| 438 |
if end >= len(input_ids):
|
|
@@ -443,13 +418,7 @@ def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128):
|
|
| 443 |
return chunks
|
| 444 |
|
| 445 |
def analyze_contract_clauses(text):
|
| 446 |
-
"""
|
| 447 |
-
Token-based chunking to avoid partial tokens.
|
| 448 |
-
Each chunk is fed into the fine-tuned CUAD model on GPU.
|
| 449 |
-
"""
|
| 450 |
-
# We'll break the text into chunks of up to 384 tokens, with a stride of 128
|
| 451 |
text_chunks = chunk_text_by_tokens(text, cuad_tokenizer, max_chunk_len=384, stride=128)
|
| 452 |
-
|
| 453 |
try:
|
| 454 |
clause_types = list(cuad_model.config.id2label.values())
|
| 455 |
except Exception:
|
|
@@ -459,7 +428,6 @@ def analyze_contract_clauses(text):
|
|
| 459 |
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
|
| 460 |
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
|
| 461 |
]
|
| 462 |
-
|
| 463 |
clauses_detected = []
|
| 464 |
|
| 465 |
for chunk in text_chunks:
|
|
@@ -467,26 +435,20 @@ def analyze_contract_clauses(text):
|
|
| 467 |
if not chunk:
|
| 468 |
continue
|
| 469 |
try:
|
| 470 |
-
# Tokenize the chunk again for the model
|
| 471 |
tokenized_inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
|
|
|
|
| 472 |
inputs = {k: v.to(device) for k, v in tokenized_inputs.items()}
|
| 473 |
-
|
| 474 |
if torch.any(inputs["input_ids"] >= cuad_model.config.vocab_size):
|
| 475 |
print("Invalid token id found; skipping chunk")
|
| 476 |
continue
|
| 477 |
-
|
| 478 |
with torch.no_grad():
|
| 479 |
outputs = cuad_model(**inputs)
|
| 480 |
-
# Force synchronization so that if there's a device error, we catch it here
|
| 481 |
if device == "cuda":
|
| 482 |
torch.cuda.synchronize()
|
| 483 |
-
|
| 484 |
-
# Shape check
|
| 485 |
if outputs.start_logits.shape[1] != inputs["input_ids"].shape[1]:
|
| 486 |
print("Mismatch in logits shape; skipping chunk")
|
| 487 |
continue
|
| 488 |
-
|
| 489 |
-
# For demonstration, we just apply a threshold to the start_logits
|
| 490 |
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
|
| 491 |
for idx, confidence in enumerate(predictions):
|
| 492 |
if confidence > 0.5 and idx < len(clause_types):
|
|
@@ -494,21 +456,17 @@ def analyze_contract_clauses(text):
|
|
| 494 |
"type": clause_types[idx],
|
| 495 |
"confidence": float(confidence)
|
| 496 |
})
|
| 497 |
-
|
| 498 |
except Exception as e:
|
| 499 |
print(f"Error processing chunk: {e}")
|
| 500 |
-
# Clear GPU cache if there's an error
|
| 501 |
if device == "cuda":
|
| 502 |
torch.cuda.empty_cache()
|
| 503 |
continue
|
| 504 |
|
| 505 |
-
# Aggregate clauses by their highest confidence
|
| 506 |
aggregated_clauses = {}
|
| 507 |
for clause in clauses_detected:
|
| 508 |
ctype = clause["type"]
|
| 509 |
if ctype not in aggregated_clauses or clause["confidence"] > aggregated_clauses[ctype]["confidence"]:
|
| 510 |
aggregated_clauses[ctype] = clause
|
| 511 |
-
|
| 512 |
return list(aggregated_clauses.values())
|
| 513 |
|
| 514 |
#############################
|
|
@@ -517,24 +475,14 @@ def analyze_contract_clauses(text):
|
|
| 517 |
|
| 518 |
@app.post("/analyze_legal_document")
|
| 519 |
async def analyze_legal_document(file: UploadFile = File(...)):
|
| 520 |
-
"""
|
| 521 |
-
Analyze a legal document (PDF). Extract text, summarize, detect entities,
|
| 522 |
-
do risk analysis, detect clauses, and store context for chat.
|
| 523 |
-
"""
|
| 524 |
try:
|
| 525 |
content = await file.read()
|
| 526 |
file_hash = compute_md5(content)
|
| 527 |
-
|
| 528 |
-
# Return cached result if we've already processed this file
|
| 529 |
if file_hash in analysis_cache:
|
| 530 |
return analysis_cache[file_hash]
|
| 531 |
-
|
| 532 |
-
# Extract text
|
| 533 |
text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
|
| 534 |
if not text:
|
| 535 |
return {"status": "error", "message": "No valid text found in the document."}
|
| 536 |
-
|
| 537 |
-
# Summarize (handle short documents gracefully)
|
| 538 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 539 |
try:
|
| 540 |
if len(text) > 100:
|
|
@@ -544,20 +492,11 @@ async def analyze_legal_document(file: UploadFile = File(...)):
|
|
| 544 |
except Exception as e:
|
| 545 |
summary = "Summarization failed due to an error."
|
| 546 |
print(f"Summarization error: {e}")
|
| 547 |
-
|
| 548 |
-
# Extract named entities
|
| 549 |
entities = extract_named_entities(text)
|
| 550 |
-
|
| 551 |
-
# Analyze risk
|
| 552 |
risk_analysis = analyze_risk_enhanced(text)
|
| 553 |
-
|
| 554 |
-
# Detect clauses
|
| 555 |
clauses = analyze_contract_clauses(text)
|
| 556 |
-
|
| 557 |
-
# Store the document context for chatbot
|
| 558 |
generated_task_id = str(uuid.uuid4())
|
| 559 |
store_document_context(generated_task_id, text)
|
| 560 |
-
|
| 561 |
result = {
|
| 562 |
"status": "success",
|
| 563 |
"task_id": generated_task_id,
|
|
@@ -566,46 +505,29 @@ async def analyze_legal_document(file: UploadFile = File(...)):
|
|
| 566 |
"risk_analysis": risk_analysis,
|
| 567 |
"clauses_detected": clauses
|
| 568 |
}
|
| 569 |
-
|
| 570 |
-
# Cache it
|
| 571 |
analysis_cache[file_hash] = result
|
| 572 |
return result
|
| 573 |
-
|
| 574 |
except Exception as e:
|
| 575 |
return {"status": "error", "message": str(e)}
|
| 576 |
|
| 577 |
@app.post("/analyze_legal_video")
|
| 578 |
async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
| 579 |
-
"""
|
| 580 |
-
Analyze a legal video: transcribe, summarize, detect entities, risk analysis, etc.
|
| 581 |
-
"""
|
| 582 |
try:
|
| 583 |
content = await file.read()
|
| 584 |
file_hash = compute_md5(content)
|
| 585 |
if file_hash in analysis_cache:
|
| 586 |
return analysis_cache[file_hash]
|
| 587 |
-
|
| 588 |
-
# Save video temporarily
|
| 589 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 590 |
temp_file.write(content)
|
| 591 |
temp_file_path = temp_file.name
|
| 592 |
-
|
| 593 |
-
# Transcribe
|
| 594 |
text = await process_video_to_text(temp_file_path)
|
| 595 |
-
|
| 596 |
-
# Cleanup
|
| 597 |
if os.path.exists(temp_file_path):
|
| 598 |
os.remove(temp_file_path)
|
| 599 |
-
|
| 600 |
if not text:
|
| 601 |
return {"status": "error", "message": "No speech could be transcribed from the video."}
|
| 602 |
-
|
| 603 |
-
# Save transcript
|
| 604 |
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
| 605 |
with open(transcript_path, "w") as f:
|
| 606 |
f.write(text)
|
| 607 |
-
|
| 608 |
-
# Summarize
|
| 609 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 610 |
try:
|
| 611 |
if len(text) > 100:
|
|
@@ -615,16 +537,11 @@ async def analyze_legal_video(file: UploadFile = File(...), background_tasks: Ba
|
|
| 615 |
except Exception as e:
|
| 616 |
summary = "Summarization failed due to an error."
|
| 617 |
print(f"Summarization error: {e}")
|
| 618 |
-
|
| 619 |
-
# Entities, risk, clauses
|
| 620 |
entities = extract_named_entities(text)
|
| 621 |
risk_analysis = analyze_risk_enhanced(text)
|
| 622 |
clauses = analyze_contract_clauses(text)
|
| 623 |
-
|
| 624 |
-
# Store context
|
| 625 |
generated_task_id = str(uuid.uuid4())
|
| 626 |
store_document_context(generated_task_id, text)
|
| 627 |
-
|
| 628 |
result = {
|
| 629 |
"status": "success",
|
| 630 |
"task_id": generated_task_id,
|
|
@@ -642,36 +559,22 @@ async def analyze_legal_video(file: UploadFile = File(...), background_tasks: Ba
|
|
| 642 |
|
| 643 |
@app.post("/analyze_legal_audio")
|
| 644 |
async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
| 645 |
-
"""
|
| 646 |
-
Analyze an audio file: transcribe, summarize, detect entities, risk analysis, etc.
|
| 647 |
-
"""
|
| 648 |
try:
|
| 649 |
content = await file.read()
|
| 650 |
file_hash = compute_md5(content)
|
| 651 |
if file_hash in analysis_cache:
|
| 652 |
return analysis_cache[file_hash]
|
| 653 |
-
|
| 654 |
-
# Save audio temporarily
|
| 655 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 656 |
temp_file.write(content)
|
| 657 |
temp_file_path = temp_file.name
|
| 658 |
-
|
| 659 |
-
# Transcribe
|
| 660 |
text = await process_audio_to_text(temp_file_path)
|
| 661 |
-
|
| 662 |
-
# Cleanup
|
| 663 |
if os.path.exists(temp_file_path):
|
| 664 |
os.remove(temp_file_path)
|
| 665 |
-
|
| 666 |
if not text:
|
| 667 |
return {"status": "error", "message": "No speech could be transcribed from the audio."}
|
| 668 |
-
|
| 669 |
-
# Save transcript
|
| 670 |
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
| 671 |
with open(transcript_path, "w") as f:
|
| 672 |
f.write(text)
|
| 673 |
-
|
| 674 |
-
# Summarize
|
| 675 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 676 |
try:
|
| 677 |
if len(text) > 100:
|
|
@@ -681,16 +584,11 @@ async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: Ba
|
|
| 681 |
except Exception as e:
|
| 682 |
summary = "Summarization failed due to an error."
|
| 683 |
print(f"Summarization error: {e}")
|
| 684 |
-
|
| 685 |
-
# Entities, risk, clauses
|
| 686 |
entities = extract_named_entities(text)
|
| 687 |
risk_analysis = analyze_risk_enhanced(text)
|
| 688 |
clauses = analyze_contract_clauses(text)
|
| 689 |
-
|
| 690 |
-
# Store context
|
| 691 |
generated_task_id = str(uuid.uuid4())
|
| 692 |
store_document_context(generated_task_id, text)
|
| 693 |
-
|
| 694 |
result = {
|
| 695 |
"status": "success",
|
| 696 |
"task_id": generated_task_id,
|
|
@@ -716,9 +614,6 @@ async def get_transcript(transcript_id: str):
|
|
| 716 |
|
| 717 |
@app.post("/legal_chatbot")
|
| 718 |
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
|
| 719 |
-
"""
|
| 720 |
-
Simple QA pipeline on the stored document context.
|
| 721 |
-
"""
|
| 722 |
document_context = load_document_context(task_id)
|
| 723 |
if not document_context:
|
| 724 |
return {"response": "⚠️ No relevant document found for this task ID."}
|
|
@@ -762,7 +657,6 @@ def setup_ngrok():
|
|
| 762 |
print(f"⚠️ Ngrok setup error: {e}")
|
| 763 |
return None
|
| 764 |
|
| 765 |
-
# Visualization endpoints
|
| 766 |
@app.get("/download_clause_bar_chart")
|
| 767 |
async def download_clause_bar_chart(task_id: str):
|
| 768 |
try:
|
|
@@ -826,7 +720,6 @@ async def download_clause_radar_chart(task_id: str):
|
|
| 826 |
raise HTTPException(status_code=404, detail="No clauses detected.")
|
| 827 |
labels = [c["type"] for c in clauses]
|
| 828 |
values = [c["confidence"] for c in clauses]
|
| 829 |
-
# close the loop for radar
|
| 830 |
labels += labels[:1]
|
| 831 |
values += values[:1]
|
| 832 |
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
|
|
@@ -854,4 +747,3 @@ if __name__ == "__main__":
|
|
| 854 |
else:
|
| 855 |
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
|
| 856 |
run()
|
| 857 |
-
|
|
|
|
| 38 |
# Global cache for analysis results based on file hash
|
| 39 |
analysis_cache = {}
|
| 40 |
|
| 41 |
+
# Ensure compatibility with Google Colab (if applicable)
|
| 42 |
try:
|
| 43 |
from google.colab import drive
|
| 44 |
drive.mount('/content/drive')
|
| 45 |
except Exception:
|
| 46 |
+
pass # Not running in Colab
|
| 47 |
|
| 48 |
+
# Ensure required directories exist
|
| 49 |
os.makedirs("static", exist_ok=True)
|
| 50 |
os.makedirs("temp", exist_ok=True)
|
| 51 |
|
| 52 |
# Use GPU if available
|
| 53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
|
| 55 |
+
# Initialize FastAPI
|
| 56 |
app = FastAPI(title="Legal Document and Video Analyzer")
|
| 57 |
|
| 58 |
+
# Add CORS middleware
|
| 59 |
app.add_middleware(
|
| 60 |
CORSMiddleware,
|
| 61 |
allow_origins=["*"],
|
|
|
|
| 64 |
allow_headers=["*"],
|
| 65 |
)
|
| 66 |
|
| 67 |
+
# In-memory storage for document text and chat history
|
| 68 |
document_storage = {}
|
| 69 |
chat_history = []
|
| 70 |
|
|
|
|
| 79 |
return hashlib.md5(content).hexdigest()
|
| 80 |
|
| 81 |
#############################
|
| 82 |
+
# Fine-tuning on CUAD QA #
|
| 83 |
#############################
|
| 84 |
|
| 85 |
def fine_tune_cuad_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
from datasets import load_dataset
|
| 87 |
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering, AutoTokenizer
|
| 88 |
|
|
|
|
| 157 |
tokenized_examples["end_positions"].append(safe_end)
|
| 158 |
return tokenized_examples
|
| 159 |
|
| 160 |
+
print("✅ Tokenizing dataset...")
|
| 161 |
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
|
| 162 |
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
|
| 163 |
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
|
|
|
| 198 |
#############################
|
| 199 |
|
| 200 |
try:
|
| 201 |
+
# Load spaCy model
|
| 202 |
try:
|
| 203 |
nlp = spacy.load("en_core_web_sm")
|
| 204 |
except Exception:
|
|
|
|
| 206 |
nlp = spacy.load("en_core_web_sm")
|
| 207 |
print("✅ Loaded spaCy model.")
|
| 208 |
|
| 209 |
+
# Create summarizer and QA pipelines on GPU
|
| 210 |
summarizer = pipeline(
|
| 211 |
"summarization",
|
| 212 |
model="facebook/bart-large-cnn",
|
| 213 |
tokenizer="facebook/bart-large-cnn",
|
| 214 |
device=0 if device == "cuda" else -1
|
| 215 |
)
|
|
|
|
|
|
|
| 216 |
qa_model = pipeline(
|
| 217 |
"question-answering",
|
| 218 |
model="deepset/roberta-base-squad2",
|
| 219 |
device=0 if device == "cuda" else -1
|
| 220 |
)
|
| 221 |
|
| 222 |
+
# Use GPU for sentence embeddings if available
|
| 223 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
| 224 |
|
|
|
|
| 225 |
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if device == "cuda" else -1)
|
| 226 |
|
| 227 |
+
# Speech-to-text pipeline on GPU (if available)
|
| 228 |
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
|
| 229 |
device_map="auto" if device == "cuda" else None)
|
| 230 |
|
| 231 |
+
# Load or fine-tune the CUAD QA model and move to GPU
|
| 232 |
if os.path.exists("fine_tuned_legal_qa"):
|
| 233 |
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
|
| 234 |
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
|
|
|
|
| 236 |
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
|
| 237 |
cuad_model.to(device)
|
| 238 |
else:
|
| 239 |
+
print("⚠️ Fine-tuned QA model not found. Fine-tuning now (this may take a while)...")
|
| 240 |
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
|
| 241 |
cuad_model.to(device)
|
| 242 |
|
|
|
|
| 243 |
sentiment_pipeline = pipeline(
|
| 244 |
"sentiment-analysis",
|
| 245 |
model="distilbert-base-uncased-finetuned-sst-2-english",
|
|
|
|
| 274 |
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
| 275 |
|
| 276 |
async def process_video_to_text(video_file_path):
|
|
|
|
|
|
|
|
|
|
| 277 |
try:
|
| 278 |
print(f"Processing video file at {video_file_path}")
|
| 279 |
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
|
|
|
| 295 |
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
|
| 296 |
|
| 297 |
async def process_audio_to_text(audio_file_path):
|
|
|
|
|
|
|
|
|
|
| 298 |
try:
|
| 299 |
print(f"Processing audio file at {audio_file_path}")
|
| 300 |
result = await run_in_threadpool(speech_to_text, audio_file_path)
|
|
|
|
| 306 |
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
|
| 307 |
|
| 308 |
def extract_named_entities(text):
|
|
|
|
|
|
|
|
|
|
| 309 |
max_length = 10000
|
| 310 |
entities = []
|
| 311 |
for i in range(0, len(text), max_length):
|
|
|
|
| 357 |
weight = float(weight_str)
|
| 358 |
except:
|
| 359 |
weight = 0.0
|
|
|
|
| 360 |
if word.lower() not in STOP_WORDS and len(word) > 1:
|
| 361 |
terms.append((weight, word))
|
| 362 |
terms.sort(key=lambda x: -x[0])
|
|
|
|
| 363 |
if terms:
|
| 364 |
if any("liability" in w.lower() for _, w in terms):
|
| 365 |
label = "Liability & Penalty Risk"
|
|
|
|
| 401 |
#############################
|
| 402 |
|
| 403 |
def chunk_text_by_tokens(text, tokenizer, max_chunk_len=384, stride=128):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
encoded = tokenizer(text, add_special_tokens=False)
|
| 405 |
input_ids = encoded["input_ids"]
|
|
|
|
| 406 |
chunks = []
|
| 407 |
idx = 0
|
| 408 |
while idx < len(input_ids):
|
| 409 |
end = idx + max_chunk_len
|
| 410 |
sub_ids = input_ids[idx:end]
|
|
|
|
| 411 |
chunk_text = tokenizer.decode(sub_ids, skip_special_tokens=True)
|
| 412 |
chunks.append(chunk_text)
|
| 413 |
if end >= len(input_ids):
|
|
|
|
| 418 |
return chunks
|
| 419 |
|
| 420 |
def analyze_contract_clauses(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
text_chunks = chunk_text_by_tokens(text, cuad_tokenizer, max_chunk_len=384, stride=128)
|
|
|
|
| 422 |
try:
|
| 423 |
clause_types = list(cuad_model.config.id2label.values())
|
| 424 |
except Exception:
|
|
|
|
| 428 |
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
|
| 429 |
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
|
| 430 |
]
|
|
|
|
| 431 |
clauses_detected = []
|
| 432 |
|
| 433 |
for chunk in text_chunks:
|
|
|
|
| 435 |
if not chunk:
|
| 436 |
continue
|
| 437 |
try:
|
|
|
|
| 438 |
tokenized_inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
|
| 439 |
+
# Move to GPU and clamp token IDs to ensure they are within valid range
|
| 440 |
inputs = {k: v.to(device) for k, v in tokenized_inputs.items()}
|
| 441 |
+
inputs["input_ids"] = torch.clamp(inputs["input_ids"], max=cuad_model.config.vocab_size - 1)
|
| 442 |
if torch.any(inputs["input_ids"] >= cuad_model.config.vocab_size):
|
| 443 |
print("Invalid token id found; skipping chunk")
|
| 444 |
continue
|
|
|
|
| 445 |
with torch.no_grad():
|
| 446 |
outputs = cuad_model(**inputs)
|
|
|
|
| 447 |
if device == "cuda":
|
| 448 |
torch.cuda.synchronize()
|
|
|
|
|
|
|
| 449 |
if outputs.start_logits.shape[1] != inputs["input_ids"].shape[1]:
|
| 450 |
print("Mismatch in logits shape; skipping chunk")
|
| 451 |
continue
|
|
|
|
|
|
|
| 452 |
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
|
| 453 |
for idx, confidence in enumerate(predictions):
|
| 454 |
if confidence > 0.5 and idx < len(clause_types):
|
|
|
|
| 456 |
"type": clause_types[idx],
|
| 457 |
"confidence": float(confidence)
|
| 458 |
})
|
|
|
|
| 459 |
except Exception as e:
|
| 460 |
print(f"Error processing chunk: {e}")
|
|
|
|
| 461 |
if device == "cuda":
|
| 462 |
torch.cuda.empty_cache()
|
| 463 |
continue
|
| 464 |
|
|
|
|
| 465 |
aggregated_clauses = {}
|
| 466 |
for clause in clauses_detected:
|
| 467 |
ctype = clause["type"]
|
| 468 |
if ctype not in aggregated_clauses or clause["confidence"] > aggregated_clauses[ctype]["confidence"]:
|
| 469 |
aggregated_clauses[ctype] = clause
|
|
|
|
| 470 |
return list(aggregated_clauses.values())
|
| 471 |
|
| 472 |
#############################
|
|
|
|
| 475 |
|
| 476 |
@app.post("/analyze_legal_document")
|
| 477 |
async def analyze_legal_document(file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
try:
|
| 479 |
content = await file.read()
|
| 480 |
file_hash = compute_md5(content)
|
|
|
|
|
|
|
| 481 |
if file_hash in analysis_cache:
|
| 482 |
return analysis_cache[file_hash]
|
|
|
|
|
|
|
| 483 |
text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
|
| 484 |
if not text:
|
| 485 |
return {"status": "error", "message": "No valid text found in the document."}
|
|
|
|
|
|
|
| 486 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 487 |
try:
|
| 488 |
if len(text) > 100:
|
|
|
|
| 492 |
except Exception as e:
|
| 493 |
summary = "Summarization failed due to an error."
|
| 494 |
print(f"Summarization error: {e}")
|
|
|
|
|
|
|
| 495 |
entities = extract_named_entities(text)
|
|
|
|
|
|
|
| 496 |
risk_analysis = analyze_risk_enhanced(text)
|
|
|
|
|
|
|
| 497 |
clauses = analyze_contract_clauses(text)
|
|
|
|
|
|
|
| 498 |
generated_task_id = str(uuid.uuid4())
|
| 499 |
store_document_context(generated_task_id, text)
|
|
|
|
| 500 |
result = {
|
| 501 |
"status": "success",
|
| 502 |
"task_id": generated_task_id,
|
|
|
|
| 505 |
"risk_analysis": risk_analysis,
|
| 506 |
"clauses_detected": clauses
|
| 507 |
}
|
|
|
|
|
|
|
| 508 |
analysis_cache[file_hash] = result
|
| 509 |
return result
|
|
|
|
| 510 |
except Exception as e:
|
| 511 |
return {"status": "error", "message": str(e)}
|
| 512 |
|
| 513 |
@app.post("/analyze_legal_video")
|
| 514 |
async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
|
|
|
|
|
|
|
|
|
| 515 |
try:
|
| 516 |
content = await file.read()
|
| 517 |
file_hash = compute_md5(content)
|
| 518 |
if file_hash in analysis_cache:
|
| 519 |
return analysis_cache[file_hash]
|
|
|
|
|
|
|
| 520 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 521 |
temp_file.write(content)
|
| 522 |
temp_file_path = temp_file.name
|
|
|
|
|
|
|
| 523 |
text = await process_video_to_text(temp_file_path)
|
|
|
|
|
|
|
| 524 |
if os.path.exists(temp_file_path):
|
| 525 |
os.remove(temp_file_path)
|
|
|
|
| 526 |
if not text:
|
| 527 |
return {"status": "error", "message": "No speech could be transcribed from the video."}
|
|
|
|
|
|
|
| 528 |
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
| 529 |
with open(transcript_path, "w") as f:
|
| 530 |
f.write(text)
|
|
|
|
|
|
|
| 531 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 532 |
try:
|
| 533 |
if len(text) > 100:
|
|
|
|
| 537 |
except Exception as e:
|
| 538 |
summary = "Summarization failed due to an error."
|
| 539 |
print(f"Summarization error: {e}")
|
|
|
|
|
|
|
| 540 |
entities = extract_named_entities(text)
|
| 541 |
risk_analysis = analyze_risk_enhanced(text)
|
| 542 |
clauses = analyze_contract_clauses(text)
|
|
|
|
|
|
|
| 543 |
generated_task_id = str(uuid.uuid4())
|
| 544 |
store_document_context(generated_task_id, text)
|
|
|
|
| 545 |
result = {
|
| 546 |
"status": "success",
|
| 547 |
"task_id": generated_task_id,
|
|
|
|
| 559 |
|
| 560 |
@app.post("/analyze_legal_audio")
|
| 561 |
async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
|
|
|
|
|
|
|
|
|
| 562 |
try:
|
| 563 |
content = await file.read()
|
| 564 |
file_hash = compute_md5(content)
|
| 565 |
if file_hash in analysis_cache:
|
| 566 |
return analysis_cache[file_hash]
|
|
|
|
|
|
|
| 567 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
| 568 |
temp_file.write(content)
|
| 569 |
temp_file_path = temp_file.name
|
|
|
|
|
|
|
| 570 |
text = await process_audio_to_text(temp_file_path)
|
|
|
|
|
|
|
| 571 |
if os.path.exists(temp_file_path):
|
| 572 |
os.remove(temp_file_path)
|
|
|
|
| 573 |
if not text:
|
| 574 |
return {"status": "error", "message": "No speech could be transcribed from the audio."}
|
|
|
|
|
|
|
| 575 |
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
| 576 |
with open(transcript_path, "w") as f:
|
| 577 |
f.write(text)
|
|
|
|
|
|
|
| 578 |
summary_text = text[:4096] if len(text) > 4096 else text
|
| 579 |
try:
|
| 580 |
if len(text) > 100:
|
|
|
|
| 584 |
except Exception as e:
|
| 585 |
summary = "Summarization failed due to an error."
|
| 586 |
print(f"Summarization error: {e}")
|
|
|
|
|
|
|
| 587 |
entities = extract_named_entities(text)
|
| 588 |
risk_analysis = analyze_risk_enhanced(text)
|
| 589 |
clauses = analyze_contract_clauses(text)
|
|
|
|
|
|
|
| 590 |
generated_task_id = str(uuid.uuid4())
|
| 591 |
store_document_context(generated_task_id, text)
|
|
|
|
| 592 |
result = {
|
| 593 |
"status": "success",
|
| 594 |
"task_id": generated_task_id,
|
|
|
|
| 614 |
|
| 615 |
@app.post("/legal_chatbot")
|
| 616 |
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
|
|
|
|
|
|
|
|
|
|
| 617 |
document_context = load_document_context(task_id)
|
| 618 |
if not document_context:
|
| 619 |
return {"response": "⚠️ No relevant document found for this task ID."}
|
|
|
|
| 657 |
print(f"⚠️ Ngrok setup error: {e}")
|
| 658 |
return None
|
| 659 |
|
|
|
|
| 660 |
@app.get("/download_clause_bar_chart")
|
| 661 |
async def download_clause_bar_chart(task_id: str):
|
| 662 |
try:
|
|
|
|
| 720 |
raise HTTPException(status_code=404, detail="No clauses detected.")
|
| 721 |
labels = [c["type"] for c in clauses]
|
| 722 |
values = [c["confidence"] for c in clauses]
|
|
|
|
| 723 |
labels += labels[:1]
|
| 724 |
values += values[:1]
|
| 725 |
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
|
|
|
|
| 747 |
else:
|
| 748 |
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
|
| 749 |
run()
|
|
|