techysanoj's picture
Update app.py
65f769b
raw
history blame
2.16 kB
import gradio as gr
import cv2
import torch
from PIL import Image
from transformers import DetrImageProcessor, DetrForObjectDetection
# Load the pre-trained DETR model
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
model.eval()
# Function for live object detection from the camera
def live_object_detection():
# Open a connection to the camera (replace with your own camera setup)
cap = cv2.VideoCapture(0)
while True:
# Capture frame-by-frame
ret, frame = cap.read()
# Convert the frame to PIL Image
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Process the frame with the DETR model
inputs = processor(images=frame_pil, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([frame_pil.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
# Draw bounding boxes on the frame
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [int(round(i)) for i in box.tolist()]
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
cv2.putText(frame, f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}",
(box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Display the resulting frame
cv2.imshow('Object Detection', frame)
# Break the loop when 'q' key is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the camera and close all windows
cap.release()
cv2.destroyAllWindows()
# Define the Gradio interface
iface = gr.Interface(
fn=live_object_detection,
inputs="webcam",
outputs="image",
live=True,
)
# Launch the Gradio interface
iface.launch()