Spaces:
Runtime error
Runtime error
Commit
·
65f769b
1
Parent(s):
b2f7aa2
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import torch
|
4 |
-
from torchvision import transforms
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
-
# Load the pre-trained
|
8 |
-
|
9 |
-
model =
|
10 |
model.eval()
|
11 |
|
12 |
-
# Define the transformations for the input image
|
13 |
-
transform = transforms.Compose([
|
14 |
-
transforms.ToTensor(),
|
15 |
-
])
|
16 |
-
|
17 |
-
# Function to perform object detection on an image
|
18 |
-
def detect_objects(image):
|
19 |
-
# Convert image to tensor
|
20 |
-
input_tensor = transform(image).unsqueeze(0)
|
21 |
-
|
22 |
-
# Perform object detection
|
23 |
-
with torch.no_grad():
|
24 |
-
predictions = model(input_tensor)
|
25 |
-
|
26 |
-
# Extract bounding boxes and labels from predictions
|
27 |
-
boxes = predictions[0]['boxes'].numpy()
|
28 |
-
labels = predictions[0]['labels'].numpy()
|
29 |
-
|
30 |
-
return boxes, labels
|
31 |
-
|
32 |
# Function for live object detection from the camera
|
33 |
def live_object_detection():
|
34 |
# Open a connection to the camera (replace with your own camera setup)
|
@@ -41,14 +21,21 @@ def live_object_detection():
|
|
41 |
# Convert the frame to PIL Image
|
42 |
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
43 |
|
44 |
-
#
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Draw bounding boxes on the frame
|
48 |
-
for
|
49 |
-
box = [int(
|
50 |
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
51 |
-
cv2.putText(frame, f"
|
|
|
52 |
|
53 |
# Display the resulting frame
|
54 |
cv2.imshow('Object Detection', frame)
|
@@ -63,11 +50,8 @@ def live_object_detection():
|
|
63 |
|
64 |
# Define the Gradio interface
|
65 |
iface = gr.Interface(
|
66 |
-
fn=
|
67 |
-
inputs=
|
68 |
-
gr.Image(type="pil", label="Upload a photo for object detection"),
|
69 |
-
"webcam",
|
70 |
-
],
|
71 |
outputs="image",
|
72 |
live=True,
|
73 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import torch
|
|
|
4 |
from PIL import Image
|
5 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
6 |
|
7 |
+
# Load the pre-trained DETR model
|
8 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
9 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
10 |
model.eval()
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Function for live object detection from the camera
|
13 |
def live_object_detection():
|
14 |
# Open a connection to the camera (replace with your own camera setup)
|
|
|
21 |
# Convert the frame to PIL Image
|
22 |
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
23 |
|
24 |
+
# Process the frame with the DETR model
|
25 |
+
inputs = processor(images=frame_pil, return_tensors="pt")
|
26 |
+
outputs = model(**inputs)
|
27 |
+
|
28 |
+
# convert outputs (bounding boxes and class logits) to COCO API
|
29 |
+
# let's only keep detections with score > 0.9
|
30 |
+
target_sizes = torch.tensor([frame_pil.size[::-1]])
|
31 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
32 |
|
33 |
# Draw bounding boxes on the frame
|
34 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
35 |
+
box = [int(round(i)) for i in box.tolist()]
|
36 |
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
37 |
+
cv2.putText(frame, f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}",
|
38 |
+
(box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
39 |
|
40 |
# Display the resulting frame
|
41 |
cv2.imshow('Object Detection', frame)
|
|
|
50 |
|
51 |
# Define the Gradio interface
|
52 |
iface = gr.Interface(
|
53 |
+
fn=live_object_detection,
|
54 |
+
inputs="webcam",
|
|
|
|
|
|
|
55 |
outputs="image",
|
56 |
live=True,
|
57 |
)
|