feat: Adicionar anotações de tipo e documentação para métodos na classe SignatureDetector
Browse files- detector.py +113 -24
detector.py
CHANGED
@@ -3,9 +3,11 @@ import time
|
|
3 |
|
4 |
import cv2
|
5 |
import matplotlib.pyplot as plt
|
|
|
6 |
import numpy as np
|
7 |
import onnxruntime as ort
|
8 |
import pandas as pd
|
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
from constants import REPO_ID, FILENAME, MODEL_DIR, MODEL_PATH
|
@@ -48,7 +50,7 @@ def download_model():
|
|
48 |
|
49 |
|
50 |
class SignatureDetector:
|
51 |
-
def __init__(self, model_path):
|
52 |
self.model_path = model_path
|
53 |
self.classes = ["signature"]
|
54 |
self.input_width = 640
|
@@ -57,19 +59,29 @@ class SignatureDetector:
|
|
57 |
# Initialize ONNX Runtime session
|
58 |
options = ort.SessionOptions()
|
59 |
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
|
60 |
-
self.session = ort.InferenceSession(
|
61 |
self.session.set_providers(
|
62 |
["OpenVINOExecutionProvider"], [{"device_type": "CPU"}]
|
63 |
)
|
64 |
|
65 |
self.metrics_storage = MetricsStorage()
|
66 |
|
67 |
-
def update_metrics(self, inference_time):
|
68 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
69 |
self.metrics_storage.add_metric(inference_time)
|
70 |
|
71 |
-
def get_metrics(self):
|
72 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
73 |
times = self.metrics_storage.get_recent_metrics()
|
74 |
total = self.metrics_storage.get_total_inferences()
|
75 |
avg = self.metrics_storage.get_average_time()
|
@@ -80,17 +92,23 @@ class SignatureDetector:
|
|
80 |
"times": times,
|
81 |
"total_inferences": total,
|
82 |
"avg_time": avg,
|
83 |
-
"start_index": start_index,
|
84 |
}
|
85 |
|
86 |
-
def load_initial_metrics(
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
metrics = self.get_metrics()
|
89 |
|
90 |
-
if not metrics["times"]:
|
91 |
return None, None, None, None, None, None
|
92 |
|
93 |
-
# Criar plots data
|
94 |
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
|
95 |
indices = range(
|
96 |
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
|
@@ -104,7 +122,6 @@ class SignatureDetector:
|
|
104 |
}
|
105 |
)
|
106 |
|
107 |
-
# Criar plots
|
108 |
hist_fig, line_fig = self.create_plots(hist_data, line_data)
|
109 |
|
110 |
return (
|
@@ -116,11 +133,22 @@ class SignatureDetector:
|
|
116 |
f"{metrics['times'][-1]:.2f}",
|
117 |
)
|
118 |
|
119 |
-
def create_plots(
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
plt.style.use("dark_background")
|
122 |
|
123 |
-
#
|
124 |
hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
|
125 |
hist_ax.set_facecolor("#f0f0f5")
|
126 |
hist_data.hist(
|
@@ -137,7 +165,7 @@ class SignatureDetector:
|
|
137 |
hist_ax.tick_params(colors="#4b5563")
|
138 |
hist_ax.grid(True, linestyle="--", alpha=0.3)
|
139 |
|
140 |
-
#
|
141 |
line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
|
142 |
line_ax.set_facecolor("#f0f0f5")
|
143 |
line_data.plot(
|
@@ -168,17 +196,24 @@ class SignatureDetector:
|
|
168 |
hist_fig.tight_layout()
|
169 |
line_fig.tight_layout()
|
170 |
|
171 |
-
# Fechar as figuras para liberar memória
|
172 |
plt.close(hist_fig)
|
173 |
plt.close(line_fig)
|
174 |
|
175 |
return hist_fig, line_fig
|
176 |
|
177 |
-
def preprocess(self, img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
# Convert PIL Image to cv2 format
|
179 |
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
180 |
|
181 |
-
# Get image dimensions
|
182 |
self.img_height, self.img_width = img_cv2.shape[:2]
|
183 |
|
184 |
# Convert back to RGB for processing
|
@@ -194,7 +229,18 @@ class SignatureDetector:
|
|
194 |
|
195 |
return image_data, img_cv2
|
196 |
|
197 |
-
def draw_detections(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
x1, y1, w, h = box
|
199 |
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
|
200 |
color = self.color_palette[class_id]
|
@@ -228,7 +274,25 @@ class SignatureDetector:
|
|
228 |
cv2.LINE_AA,
|
229 |
)
|
230 |
|
231 |
-
def postprocess(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
outputs = np.transpose(np.squeeze(output[0]))
|
233 |
rows = outputs.shape[0]
|
234 |
|
@@ -266,7 +330,20 @@ class SignatureDetector:
|
|
266 |
|
267 |
return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
|
268 |
|
269 |
-
def detect(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
# Preprocess the image
|
271 |
img_data, original_image = self.preprocess(image)
|
272 |
|
@@ -282,7 +359,19 @@ class SignatureDetector:
|
|
282 |
|
283 |
return output_image, self.get_metrics()
|
284 |
|
285 |
-
def detect_example(
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
output_image, _ = self.detect(image, conf_thres, iou_thres)
|
288 |
return output_image
|
|
|
3 |
|
4 |
import cv2
|
5 |
import matplotlib.pyplot as plt
|
6 |
+
from PIL import Image
|
7 |
import numpy as np
|
8 |
import onnxruntime as ort
|
9 |
import pandas as pd
|
10 |
+
from typing import Tuple
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
13 |
from constants import REPO_ID, FILENAME, MODEL_DIR, MODEL_PATH
|
|
|
50 |
|
51 |
|
52 |
class SignatureDetector:
|
53 |
+
def __init__(self, model_path: str = MODEL_PATH):
|
54 |
self.model_path = model_path
|
55 |
self.classes = ["signature"]
|
56 |
self.input_width = 640
|
|
|
59 |
# Initialize ONNX Runtime session
|
60 |
options = ort.SessionOptions()
|
61 |
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
|
62 |
+
self.session = ort.InferenceSession(self.model_path, options)
|
63 |
self.session.set_providers(
|
64 |
["OpenVINOExecutionProvider"], [{"device_type": "CPU"}]
|
65 |
)
|
66 |
|
67 |
self.metrics_storage = MetricsStorage()
|
68 |
|
69 |
+
def update_metrics(self, inference_time: float) -> None:
|
70 |
+
"""
|
71 |
+
Updates metrics in persistent storage.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
inference_time (float): The time taken for inference in milliseconds.
|
75 |
+
"""
|
76 |
self.metrics_storage.add_metric(inference_time)
|
77 |
|
78 |
+
def get_metrics(self) -> dict:
|
79 |
+
"""
|
80 |
+
Retrieves current metrics from storage.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
dict: A dictionary containing times, total inferences, average time, and start index.
|
84 |
+
"""
|
85 |
times = self.metrics_storage.get_recent_metrics()
|
86 |
total = self.metrics_storage.get_total_inferences()
|
87 |
avg = self.metrics_storage.get_average_time()
|
|
|
92 |
"times": times,
|
93 |
"total_inferences": total,
|
94 |
"avg_time": avg,
|
95 |
+
"start_index": start_index,
|
96 |
}
|
97 |
|
98 |
+
def load_initial_metrics(
|
99 |
+
self,
|
100 |
+
) -> Tuple[None, str, plt.Figure, plt.Figure, str, str]:
|
101 |
+
"""
|
102 |
+
Loads initial metrics for display.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
tuple: A tuple containing None, total inferences, histogram figure, line figure, average time, and last time.
|
106 |
+
"""
|
107 |
metrics = self.get_metrics()
|
108 |
|
109 |
+
if not metrics["times"]:
|
110 |
return None, None, None, None, None, None
|
111 |
|
|
|
112 |
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
|
113 |
indices = range(
|
114 |
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
|
|
|
122 |
}
|
123 |
)
|
124 |
|
|
|
125 |
hist_fig, line_fig = self.create_plots(hist_data, line_data)
|
126 |
|
127 |
return (
|
|
|
133 |
f"{metrics['times'][-1]:.2f}",
|
134 |
)
|
135 |
|
136 |
+
def create_plots(
|
137 |
+
self, hist_data: pd.DataFrame, line_data: pd.DataFrame
|
138 |
+
) -> Tuple[plt.Figure, plt.Figure]:
|
139 |
+
"""
|
140 |
+
Helper method to create plots.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
hist_data (pd.DataFrame): Data for histogram plot.
|
144 |
+
line_data (pd.DataFrame): Data for line plot.
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
tuple: A tuple containing histogram figure and line figure.
|
148 |
+
"""
|
149 |
plt.style.use("dark_background")
|
150 |
|
151 |
+
# Histogram plot
|
152 |
hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
|
153 |
hist_ax.set_facecolor("#f0f0f5")
|
154 |
hist_data.hist(
|
|
|
165 |
hist_ax.tick_params(colors="#4b5563")
|
166 |
hist_ax.grid(True, linestyle="--", alpha=0.3)
|
167 |
|
168 |
+
# Line plot
|
169 |
line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
|
170 |
line_ax.set_facecolor("#f0f0f5")
|
171 |
line_data.plot(
|
|
|
196 |
hist_fig.tight_layout()
|
197 |
line_fig.tight_layout()
|
198 |
|
|
|
199 |
plt.close(hist_fig)
|
200 |
plt.close(line_fig)
|
201 |
|
202 |
return hist_fig, line_fig
|
203 |
|
204 |
+
def preprocess(self, img: Image.Image) -> Tuple[np.ndarray, np.ndarray]:
|
205 |
+
"""
|
206 |
+
Preprocesses the image for inference.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
img: The image to process.
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
tuple: A tuple containing the processed image data and the original image.
|
213 |
+
"""
|
214 |
# Convert PIL Image to cv2 format
|
215 |
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
216 |
|
|
|
217 |
self.img_height, self.img_width = img_cv2.shape[:2]
|
218 |
|
219 |
# Convert back to RGB for processing
|
|
|
229 |
|
230 |
return image_data, img_cv2
|
231 |
|
232 |
+
def draw_detections(
|
233 |
+
self, img: np.ndarray, box: list, score: float, class_id: int
|
234 |
+
) -> None:
|
235 |
+
"""
|
236 |
+
Draws the detections on the image.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
img: The image to draw on.
|
240 |
+
box (list): The bounding box coordinates.
|
241 |
+
score (float): The confidence score.
|
242 |
+
class_id (int): The class ID.
|
243 |
+
"""
|
244 |
x1, y1, w, h = box
|
245 |
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
|
246 |
color = self.color_palette[class_id]
|
|
|
274 |
cv2.LINE_AA,
|
275 |
)
|
276 |
|
277 |
+
def postprocess(
|
278 |
+
self,
|
279 |
+
input_image: np.ndarray,
|
280 |
+
output: np.ndarray,
|
281 |
+
conf_thres: float,
|
282 |
+
iou_thres: float,
|
283 |
+
) -> np.ndarray:
|
284 |
+
"""
|
285 |
+
Postprocesses the output from inference.
|
286 |
+
|
287 |
+
Args:
|
288 |
+
input_image: The input image.
|
289 |
+
output: The output from inference.
|
290 |
+
conf_thres (float): Confidence threshold for detection.
|
291 |
+
iou_thres (float): Intersection over Union threshold for detection.
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
np.ndarray: The output image with detections drawn
|
295 |
+
"""
|
296 |
outputs = np.transpose(np.squeeze(output[0]))
|
297 |
rows = outputs.shape[0]
|
298 |
|
|
|
330 |
|
331 |
return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
|
332 |
|
333 |
+
def detect(
|
334 |
+
self, image: Image.Image, conf_thres: float = 0.25, iou_thres: float = 0.5
|
335 |
+
) -> Tuple[Image.Image, dict]:
|
336 |
+
"""
|
337 |
+
Detects signatures in the given image.
|
338 |
+
|
339 |
+
Args:
|
340 |
+
image: The image to process.
|
341 |
+
conf_thres (float): Confidence threshold for detection.
|
342 |
+
iou_thres (float): Intersection over Union threshold for detection.
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
tuple: A tuple containing the output image and metrics.
|
346 |
+
"""
|
347 |
# Preprocess the image
|
348 |
img_data, original_image = self.preprocess(image)
|
349 |
|
|
|
359 |
|
360 |
return output_image, self.get_metrics()
|
361 |
|
362 |
+
def detect_example(
|
363 |
+
self, image: Image.Image, conf_thres: float = 0.25, iou_thres: float = 0.5
|
364 |
+
) -> Image.Image:
|
365 |
+
"""
|
366 |
+
Wrapper method for examples that returns only the image.
|
367 |
+
|
368 |
+
Args:
|
369 |
+
image: The image to process.
|
370 |
+
conf_thres (float): Confidence threshold for detection.
|
371 |
+
iou_thres (float): Intersection over Union threshold for detection.
|
372 |
+
|
373 |
+
Returns:
|
374 |
+
The output image.
|
375 |
+
"""
|
376 |
output_image, _ = self.detect(image, conf_thres, iou_thres)
|
377 |
return output_image
|