File size: 11,923 Bytes
eaa7aa4
 
 
 
 
2840cb3
eaa7aa4
 
 
2840cb3
eaa7aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2840cb3
eaa7aa4
 
 
 
 
 
 
 
2840cb3
eaa7aa4
 
 
 
 
 
2840cb3
 
 
 
 
 
 
eaa7aa4
 
2840cb3
 
 
 
 
 
 
eaa7aa4
 
 
 
 
 
 
 
 
 
2840cb3
eaa7aa4
 
2840cb3
 
 
 
 
 
 
 
 
eaa7aa4
 
2840cb3
eaa7aa4
 
8c88f9c
eaa7aa4
 
 
 
 
 
8c88f9c
 
 
eaa7aa4
 
 
 
 
 
 
2162507
eaa7aa4
 
 
 
 
 
2840cb3
 
 
 
 
 
 
 
 
 
 
 
 
eaa7aa4
 
2840cb3
eaa7aa4
 
 
 
 
 
8c88f9c
eaa7aa4
 
 
 
8c88f9c
 
eaa7aa4
 
 
2840cb3
eaa7aa4
 
 
8c88f9c
 
eaa7aa4
 
 
8c88f9c
eaa7aa4
 
8c88f9c
 
eaa7aa4
 
 
8c88f9c
eaa7aa4
 
8c88f9c
eaa7aa4
8c88f9c
 
eaa7aa4
 
8c88f9c
 
 
eaa7aa4
 
 
 
 
 
 
 
 
2840cb3
 
 
 
 
 
 
 
 
 
eaa7aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2840cb3
 
 
 
 
 
 
 
 
 
 
 
eaa7aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2840cb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaa7aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2840cb3
 
 
 
 
 
 
 
 
 
 
 
 
 
eaa7aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2840cb3
 
 
 
 
 
 
 
 
 
 
 
 
 
eaa7aa4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import os
import time

import cv2
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import onnxruntime as ort
import pandas as pd
from typing import Tuple
from huggingface_hub import hf_hub_download

from constants import REPO_ID, FILENAME, MODEL_DIR, MODEL_PATH
from metrics_storage import MetricsStorage


def download_model():
    """Download the model using Hugging Face Hub"""
    # Ensure model directory exists
    os.makedirs(MODEL_DIR, exist_ok=True)

    try:
        print(f"Downloading model from {REPO_ID}...")
        # Download the model file from Hugging Face Hub
        model_path = hf_hub_download(
            repo_id=REPO_ID,
            filename=FILENAME,
            local_dir=MODEL_DIR,
            force_download=True,
            cache_dir=None,
        )

        # Move the file to the correct location if it's not there already
        if os.path.exists(model_path) and model_path != MODEL_PATH:
            os.rename(model_path, MODEL_PATH)

            # Remove empty directories if they exist
            empty_dir = os.path.join(MODEL_DIR, "tune")
            if os.path.exists(empty_dir):
                import shutil

                shutil.rmtree(empty_dir)

        print("Model downloaded successfully!")
        return MODEL_PATH

    except Exception as e:
        print(f"Error downloading model: {e}")
        raise e


class SignatureDetector:
    def __init__(self, model_path: str = MODEL_PATH):
        self.model_path = model_path
        self.classes = ["signature"]
        self.input_width = 640
        self.input_height = 640

        # Initialize ONNX Runtime session
        options = ort.SessionOptions()
        options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
        self.session = ort.InferenceSession(self.model_path, options)
        self.session.set_providers(
            ["OpenVINOExecutionProvider"], [{"device_type": "CPU"}]
        )

        self.metrics_storage = MetricsStorage()

    def update_metrics(self, inference_time: float) -> None:
        """
        Updates metrics in persistent storage.

        Args:
            inference_time (float): The time taken for inference in milliseconds.
        """
        self.metrics_storage.add_metric(inference_time)

    def get_metrics(self) -> dict:
        """
        Retrieves current metrics from storage.

        Returns:
            dict: A dictionary containing times, total inferences, average time, and start index.
        """
        times = self.metrics_storage.get_recent_metrics()
        total = self.metrics_storage.get_total_inferences()
        avg = self.metrics_storage.get_average_time()

        start_index = max(0, total - len(times))

        return {
            "times": times,
            "total_inferences": total,
            "avg_time": avg,
            "start_index": start_index,
        }

    def load_initial_metrics(
        self,
    ) -> Tuple[None, str, plt.Figure, plt.Figure, str, str]:
        """
        Loads initial metrics for display.

        Returns:
            tuple: A tuple containing None, total inferences, histogram figure, line figure, average time, and last time.
        """
        metrics = self.get_metrics()

        if not metrics["times"]:
            return None, None, None, None, None, None

        hist_data = pd.DataFrame({"Time (ms)": metrics["times"]})
        indices = range(
            metrics["start_index"], metrics["start_index"] + len(metrics["times"])
        )

        line_data = pd.DataFrame(
            {
                "Inference": indices,
                "Time (ms)": metrics["times"],
                "Mean": [metrics["avg_time"]] * len(metrics["times"]),
            }
        )

        hist_fig, line_fig = self.create_plots(hist_data, line_data)

        return (
            None,
            f"{metrics['total_inferences']}",
            hist_fig,
            line_fig,
            f"{metrics['avg_time']:.2f}",
            f"{metrics['times'][-1]:.2f}",
        )

    def create_plots(
        self, hist_data: pd.DataFrame, line_data: pd.DataFrame
    ) -> Tuple[plt.Figure, plt.Figure]:
        """
        Helper method to create plots.

        Args:
            hist_data (pd.DataFrame): Data for histogram plot.
            line_data (pd.DataFrame): Data for line plot.

        Returns:
            tuple: A tuple containing histogram figure and line figure.
        """
        plt.style.use("dark_background")

        # Histogram plot
        hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
        hist_ax.set_facecolor("#f0f0f5")
        hist_data.hist(
            bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white"
        )
        hist_ax.set_title(
            "Distribution of Inference Times",
            pad=15,
            fontsize=12,
            color="#1f2937",
        )
        hist_ax.set_xlabel("Time (ms)", color="#374151")
        hist_ax.set_ylabel("Frequency", color="#374151")
        hist_ax.tick_params(colors="#4b5563")
        hist_ax.grid(True, linestyle="--", alpha=0.3)

        # Line plot
        line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
        line_ax.set_facecolor("#f0f0f5")
        line_data.plot(
            x="Inference",
            y="Time (ms)",
            ax=line_ax,
            color="#4F46E5",
            alpha=0.7,
            label="Time",
        )
        line_data.plot(
            x="Inference",
            y="Mean",
            ax=line_ax,
            color="#DC2626",
            linestyle="--",
            label="Mean",
        )
        line_ax.set_title(
            "Inference Time per Execution", pad=15, fontsize=12, color="#1f2937"
        )
        line_ax.set_xlabel("Inference Number", color="#374151")
        line_ax.set_ylabel("Time (ms)", color="#374151")
        line_ax.tick_params(colors="#4b5563")
        line_ax.grid(True, linestyle="--", alpha=0.3)
        line_ax.legend(
            frameon=True, facecolor="#f0f0f5", edgecolor="white", labelcolor="black"
        )

        hist_fig.tight_layout()
        line_fig.tight_layout()

        plt.close(hist_fig)
        plt.close(line_fig)

        return hist_fig, line_fig

    def preprocess(self, img: Image.Image) -> Tuple[np.ndarray, np.ndarray]:
        """
        Preprocesses the image for inference.

        Args:
            img: The image to process.

        Returns:
            tuple: A tuple containing the processed image data and the original image.
        """
        # Convert PIL Image to cv2 format
        img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

        self.img_height, self.img_width = img_cv2.shape[:2]

        # Convert back to RGB for processing
        img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)

        # Resize
        img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height))

        # Normalize and transpose
        image_data = np.array(img_resized) / 255.0
        image_data = np.transpose(image_data, (2, 0, 1))
        image_data = np.expand_dims(image_data, axis=0).astype(np.float32)

        return image_data, img_cv2

    def draw_detections(
        self, img: np.ndarray, box: list, score: float, class_id: int
    ) -> None:
        """
        Draws the detections on the image.

        Args:
            img: The image to draw on.
            box (list): The bounding box coordinates.
            score (float): The confidence score.
            class_id (int): The class ID.
        """
        x1, y1, w, h = box
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
        color = self.color_palette[class_id]

        cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)

        label = f"{self.classes[class_id]}: {score:.2f}"
        (label_width, label_height), _ = cv2.getTextSize(
            label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
        )

        label_x = x1
        label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10

        cv2.rectangle(
            img,
            (int(label_x), int(label_y - label_height)),
            (int(label_x + label_width), int(label_y + label_height)),
            color,
            cv2.FILLED,
        )

        cv2.putText(
            img,
            label,
            (int(label_x), int(label_y)),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.5,
            (0, 0, 0),
            1,
            cv2.LINE_AA,
        )

    def postprocess(
        self,
        input_image: np.ndarray,
        output: np.ndarray,
        conf_thres: float,
        iou_thres: float,
    ) -> np.ndarray:
        """
        Postprocesses the output from inference.

        Args:
            input_image: The input image.
            output: The output from inference.
            conf_thres (float): Confidence threshold for detection.
            iou_thres (float): Intersection over Union threshold for detection.

        Returns:
            np.ndarray: The output image with detections drawn
        """
        outputs = np.transpose(np.squeeze(output[0]))
        rows = outputs.shape[0]

        boxes = []
        scores = []
        class_ids = []

        x_factor = self.img_width / self.input_width
        y_factor = self.img_height / self.input_height

        for i in range(rows):
            classes_scores = outputs[i][4:]
            max_score = np.amax(classes_scores)

            if max_score >= conf_thres:
                class_id = np.argmax(classes_scores)
                x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]

                left = int((x - w / 2) * x_factor)
                top = int((y - h / 2) * y_factor)
                width = int(w * x_factor)
                height = int(h * y_factor)

                class_ids.append(class_id)
                scores.append(max_score)
                boxes.append([left, top, width, height])

        indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres)

        for i in indices:
            box = boxes[i]
            score = scores[i]
            class_id = class_ids[i]
            self.draw_detections(input_image, box, score, class_id)

        return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)

    def detect(
        self, image: Image.Image, conf_thres: float = 0.25, iou_thres: float = 0.5
    ) -> Tuple[Image.Image, dict]:
        """
        Detects signatures in the given image.

        Args:
            image: The image to process.
            conf_thres (float): Confidence threshold for detection.
            iou_thres (float): Intersection over Union threshold for detection.

        Returns:
            tuple: A tuple containing the output image and metrics.
        """
        # Preprocess the image
        img_data, original_image = self.preprocess(image)

        # Run inference
        start_time = time.time()
        outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data})
        inference_time = (time.time() - start_time) * 1000  # Convert to milliseconds

        # Postprocess the results
        output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres)

        self.update_metrics(inference_time)

        return output_image, self.get_metrics()

    def detect_example(
        self, image: Image.Image, conf_thres: float = 0.25, iou_thres: float = 0.5
    ) -> Image.Image:
        """
        Wrapper method for examples that returns only the image.

        Args:
            image: The image to process.
            conf_thres (float): Confidence threshold for detection.
            iou_thres (float): Intersection over Union threshold for detection.

        Returns:
            The output image.
        """
        output_image, _ = self.detect(image, conf_thres, iou_thres)
        return output_image