File size: 11,923 Bytes
eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 8c88f9c eaa7aa4 8c88f9c eaa7aa4 2162507 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 8c88f9c eaa7aa4 8c88f9c eaa7aa4 2840cb3 eaa7aa4 8c88f9c eaa7aa4 8c88f9c eaa7aa4 8c88f9c eaa7aa4 8c88f9c eaa7aa4 8c88f9c eaa7aa4 8c88f9c eaa7aa4 8c88f9c eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 2840cb3 eaa7aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
import time
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import onnxruntime as ort
import pandas as pd
from typing import Tuple
from huggingface_hub import hf_hub_download
from constants import REPO_ID, FILENAME, MODEL_DIR, MODEL_PATH
from metrics_storage import MetricsStorage
def download_model():
"""Download the model using Hugging Face Hub"""
# Ensure model directory exists
os.makedirs(MODEL_DIR, exist_ok=True)
try:
print(f"Downloading model from {REPO_ID}...")
# Download the model file from Hugging Face Hub
model_path = hf_hub_download(
repo_id=REPO_ID,
filename=FILENAME,
local_dir=MODEL_DIR,
force_download=True,
cache_dir=None,
)
# Move the file to the correct location if it's not there already
if os.path.exists(model_path) and model_path != MODEL_PATH:
os.rename(model_path, MODEL_PATH)
# Remove empty directories if they exist
empty_dir = os.path.join(MODEL_DIR, "tune")
if os.path.exists(empty_dir):
import shutil
shutil.rmtree(empty_dir)
print("Model downloaded successfully!")
return MODEL_PATH
except Exception as e:
print(f"Error downloading model: {e}")
raise e
class SignatureDetector:
def __init__(self, model_path: str = MODEL_PATH):
self.model_path = model_path
self.classes = ["signature"]
self.input_width = 640
self.input_height = 640
# Initialize ONNX Runtime session
options = ort.SessionOptions()
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
self.session = ort.InferenceSession(self.model_path, options)
self.session.set_providers(
["OpenVINOExecutionProvider"], [{"device_type": "CPU"}]
)
self.metrics_storage = MetricsStorage()
def update_metrics(self, inference_time: float) -> None:
"""
Updates metrics in persistent storage.
Args:
inference_time (float): The time taken for inference in milliseconds.
"""
self.metrics_storage.add_metric(inference_time)
def get_metrics(self) -> dict:
"""
Retrieves current metrics from storage.
Returns:
dict: A dictionary containing times, total inferences, average time, and start index.
"""
times = self.metrics_storage.get_recent_metrics()
total = self.metrics_storage.get_total_inferences()
avg = self.metrics_storage.get_average_time()
start_index = max(0, total - len(times))
return {
"times": times,
"total_inferences": total,
"avg_time": avg,
"start_index": start_index,
}
def load_initial_metrics(
self,
) -> Tuple[None, str, plt.Figure, plt.Figure, str, str]:
"""
Loads initial metrics for display.
Returns:
tuple: A tuple containing None, total inferences, histogram figure, line figure, average time, and last time.
"""
metrics = self.get_metrics()
if not metrics["times"]:
return None, None, None, None, None, None
hist_data = pd.DataFrame({"Time (ms)": metrics["times"]})
indices = range(
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
)
line_data = pd.DataFrame(
{
"Inference": indices,
"Time (ms)": metrics["times"],
"Mean": [metrics["avg_time"]] * len(metrics["times"]),
}
)
hist_fig, line_fig = self.create_plots(hist_data, line_data)
return (
None,
f"{metrics['total_inferences']}",
hist_fig,
line_fig,
f"{metrics['avg_time']:.2f}",
f"{metrics['times'][-1]:.2f}",
)
def create_plots(
self, hist_data: pd.DataFrame, line_data: pd.DataFrame
) -> Tuple[plt.Figure, plt.Figure]:
"""
Helper method to create plots.
Args:
hist_data (pd.DataFrame): Data for histogram plot.
line_data (pd.DataFrame): Data for line plot.
Returns:
tuple: A tuple containing histogram figure and line figure.
"""
plt.style.use("dark_background")
# Histogram plot
hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
hist_ax.set_facecolor("#f0f0f5")
hist_data.hist(
bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white"
)
hist_ax.set_title(
"Distribution of Inference Times",
pad=15,
fontsize=12,
color="#1f2937",
)
hist_ax.set_xlabel("Time (ms)", color="#374151")
hist_ax.set_ylabel("Frequency", color="#374151")
hist_ax.tick_params(colors="#4b5563")
hist_ax.grid(True, linestyle="--", alpha=0.3)
# Line plot
line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
line_ax.set_facecolor("#f0f0f5")
line_data.plot(
x="Inference",
y="Time (ms)",
ax=line_ax,
color="#4F46E5",
alpha=0.7,
label="Time",
)
line_data.plot(
x="Inference",
y="Mean",
ax=line_ax,
color="#DC2626",
linestyle="--",
label="Mean",
)
line_ax.set_title(
"Inference Time per Execution", pad=15, fontsize=12, color="#1f2937"
)
line_ax.set_xlabel("Inference Number", color="#374151")
line_ax.set_ylabel("Time (ms)", color="#374151")
line_ax.tick_params(colors="#4b5563")
line_ax.grid(True, linestyle="--", alpha=0.3)
line_ax.legend(
frameon=True, facecolor="#f0f0f5", edgecolor="white", labelcolor="black"
)
hist_fig.tight_layout()
line_fig.tight_layout()
plt.close(hist_fig)
plt.close(line_fig)
return hist_fig, line_fig
def preprocess(self, img: Image.Image) -> Tuple[np.ndarray, np.ndarray]:
"""
Preprocesses the image for inference.
Args:
img: The image to process.
Returns:
tuple: A tuple containing the processed image data and the original image.
"""
# Convert PIL Image to cv2 format
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
self.img_height, self.img_width = img_cv2.shape[:2]
# Convert back to RGB for processing
img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)
# Resize
img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height))
# Normalize and transpose
image_data = np.array(img_resized) / 255.0
image_data = np.transpose(image_data, (2, 0, 1))
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
return image_data, img_cv2
def draw_detections(
self, img: np.ndarray, box: list, score: float, class_id: int
) -> None:
"""
Draws the detections on the image.
Args:
img: The image to draw on.
box (list): The bounding box coordinates.
score (float): The confidence score.
class_id (int): The class ID.
"""
x1, y1, w, h = box
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
color = self.color_palette[class_id]
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
label = f"{self.classes[class_id]}: {score:.2f}"
(label_width, label_height), _ = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
)
label_x = x1
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
cv2.rectangle(
img,
(int(label_x), int(label_y - label_height)),
(int(label_x + label_width), int(label_y + label_height)),
color,
cv2.FILLED,
)
cv2.putText(
img,
label,
(int(label_x), int(label_y)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0),
1,
cv2.LINE_AA,
)
def postprocess(
self,
input_image: np.ndarray,
output: np.ndarray,
conf_thres: float,
iou_thres: float,
) -> np.ndarray:
"""
Postprocesses the output from inference.
Args:
input_image: The input image.
output: The output from inference.
conf_thres (float): Confidence threshold for detection.
iou_thres (float): Intersection over Union threshold for detection.
Returns:
np.ndarray: The output image with detections drawn
"""
outputs = np.transpose(np.squeeze(output[0]))
rows = outputs.shape[0]
boxes = []
scores = []
class_ids = []
x_factor = self.img_width / self.input_width
y_factor = self.img_height / self.input_height
for i in range(rows):
classes_scores = outputs[i][4:]
max_score = np.amax(classes_scores)
if max_score >= conf_thres:
class_id = np.argmax(classes_scores)
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
left = int((x - w / 2) * x_factor)
top = int((y - h / 2) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
class_ids.append(class_id)
scores.append(max_score)
boxes.append([left, top, width, height])
indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres)
for i in indices:
box = boxes[i]
score = scores[i]
class_id = class_ids[i]
self.draw_detections(input_image, box, score, class_id)
return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
def detect(
self, image: Image.Image, conf_thres: float = 0.25, iou_thres: float = 0.5
) -> Tuple[Image.Image, dict]:
"""
Detects signatures in the given image.
Args:
image: The image to process.
conf_thres (float): Confidence threshold for detection.
iou_thres (float): Intersection over Union threshold for detection.
Returns:
tuple: A tuple containing the output image and metrics.
"""
# Preprocess the image
img_data, original_image = self.preprocess(image)
# Run inference
start_time = time.time()
outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data})
inference_time = (time.time() - start_time) * 1000 # Convert to milliseconds
# Postprocess the results
output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres)
self.update_metrics(inference_time)
return output_image, self.get_metrics()
def detect_example(
self, image: Image.Image, conf_thres: float = 0.25, iou_thres: float = 0.5
) -> Image.Image:
"""
Wrapper method for examples that returns only the image.
Args:
image: The image to process.
conf_thres (float): Confidence threshold for detection.
iou_thres (float): Intersection over Union threshold for detection.
Returns:
The output image.
"""
output_image, _ = self.detect(image, conf_thres, iou_thres)
return output_image
|