File size: 20,721 Bytes
ace7187 b6c3e5f ace7187 b6c3e5f ace7187 e17c6a5 ace7187 e17c6a5 ace7187 e17c6a5 ace7187 e17c6a5 485b371 e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f 4014f2e ace7187 4014f2e 1b1427d 4014f2e e17c6a5 b6c3e5f e17c6a5 b6c3e5f 485b371 b6c3e5f 485b371 b6c3e5f 4014f2e b6c3e5f 4014f2e b6c3e5f 4014f2e 1b1427d b6c3e5f 1b1427d b6c3e5f 4014f2e 1b1427d 4014f2e 1b1427d 4014f2e 1b1427d 4014f2e 1b1427d 4014f2e e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 371a8c3 e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f 4c0300b e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f e17c6a5 b6c3e5f 371a8c3 b6c3e5f 371a8c3 b6c3e5f 1b1427d b6c3e5f 1b1427d b6c3e5f 4014f2e b6c3e5f ace7187 371a8c3 b6c3e5f 371a8c3 b6c3e5f 371a8c3 4c0300b 951da42 b6c3e5f 951da42 371a8c3 b6c3e5f ace7187 b6c3e5f ace7187 b6c3e5f 371a8c3 b6c3e5f 371a8c3 b6c3e5f 371a8c3 b6c3e5f 951da42 b6c3e5f 951da42 b6c3e5f 951da42 b6c3e5f 951da42 b6c3e5f 951da42 b6c3e5f 951da42 b6c3e5f ace7187 b6c3e5f ace7187 b6c3e5f 371a8c3 b6c3e5f ace7187 4014f2e e17c6a5 b6c3e5f e17c6a5 485b371 e17c6a5 b6c3e5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
import os
import sqlite3
import time
import cv2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import onnxruntime as ort
import pandas as pd
from huggingface_hub import hf_hub_download
from PIL import Image
# Model info
REPO_ID = "tech4humans/yolov8s-signature-detector"
FILENAME = "yolov8s.onnx"
MODEL_DIR = "model"
MODEL_PATH = os.path.join(MODEL_DIR, "model.onnx")
DATABASE_DIR = os.path.join(os.getcwd(), "db")
DATABASE_PATH = os.path.join(DATABASE_DIR, "metrics.db")
def download_model():
"""Download the model using Hugging Face Hub"""
# Ensure model directory exists
os.makedirs(MODEL_DIR, exist_ok=True)
try:
print(f"Downloading model from {REPO_ID}...")
# Download the model file from Hugging Face Hub
model_path = hf_hub_download(
repo_id=REPO_ID,
filename=FILENAME,
local_dir=MODEL_DIR,
force_download=True,
cache_dir=None,
)
# Move the file to the correct location if it's not there already
if os.path.exists(model_path) and model_path != MODEL_PATH:
os.rename(model_path, MODEL_PATH)
# Remove empty directories if they exist
empty_dir = os.path.join(MODEL_DIR, "tune")
if os.path.exists(empty_dir):
import shutil
shutil.rmtree(empty_dir)
print("Model downloaded successfully!")
return MODEL_PATH
except Exception as e:
print(f"Error downloading model: {e}")
raise e
class MetricsStorage:
def __init__(self, db_path=DATABASE_PATH):
self.db_path = db_path
self.setup_database()
def setup_database(self):
"""Initialize the SQLite database and create tables if they don't exist"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS inference_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
inference_time REAL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
)
conn.commit()
def add_metric(self, inference_time):
"""Add a new inference time measurement to the database"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"INSERT INTO inference_metrics (inference_time) VALUES (?)",
(inference_time,),
)
conn.commit()
def get_recent_metrics(self, limit=50):
"""Get the most recent metrics from the database"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?",
(limit,),
)
results = cursor.fetchall()
return [r[0] for r in reversed(results)]
def get_total_inferences(self):
"""Get the total number of inferences recorded"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("SELECT COUNT(*) FROM inference_metrics")
return cursor.fetchone()[0]
def get_average_time(self, limit=50):
"""Get the average inference time from the most recent entries"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"SELECT AVG(inference_time) FROM (SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?)",
(limit,),
)
result = cursor.fetchone()[0]
return result if result is not None else 0
class SignatureDetector:
def __init__(self, model_path):
self.model_path = model_path
self.classes = ["signature"]
self.input_width = 640
self.input_height = 640
# Initialize ONNX Runtime session
self.session = ort.InferenceSession(
MODEL_PATH
)
self.session.set_providers(['OpenVINOExecutionProvider'], [{'device_type' : 'CPU'}])
self.metrics_storage = MetricsStorage()
def update_metrics(self, inference_time):
"""Update metrics in persistent storage"""
self.metrics_storage.add_metric(inference_time)
def get_metrics(self):
"""Get current metrics from storage"""
times = self.metrics_storage.get_recent_metrics()
total = self.metrics_storage.get_total_inferences()
avg = self.metrics_storage.get_average_time()
start_index = max(0, total - len(times))
return {
"times": times,
"total_inferences": total,
"avg_time": avg,
"start_index": start_index, # Adicionar índice inicial
}
def load_initial_metrics(self):
"""Load initial metrics for display"""
metrics = self.get_metrics()
if not metrics["times"]: # Se não houver dados
return None, None, None, None
# Criar plots data
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
indices = range(
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
)
line_data = pd.DataFrame(
{
"Inferência": indices,
"Tempo (ms)": metrics["times"],
"Média": [metrics["avg_time"]] * len(metrics["times"]),
}
)
# Criar plots
hist_fig, line_fig = self.create_plots(hist_data, line_data)
return (
None,
f"Total de Inferências: {metrics['total_inferences']}",
hist_fig,
line_fig,
)
def create_plots(self, hist_data, line_data):
"""Helper method to create plots"""
plt.style.use("dark_background")
# Histograma
hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
hist_ax.set_facecolor("#f0f0f5")
hist_data.hist(
bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white"
)
hist_ax.set_title(
"Distribuição dos Tempos de Inferência",
pad=15,
fontsize=12,
color="#1f2937",
)
hist_ax.set_xlabel("Tempo (ms)", color="#374151")
hist_ax.set_ylabel("Frequência", color="#374151")
hist_ax.tick_params(colors="#4b5563")
hist_ax.grid(True, linestyle="--", alpha=0.3)
# Gráfico de linha
line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
line_ax.set_facecolor("#f0f0f5")
line_data.plot(
x="Inferência",
y="Tempo (ms)",
ax=line_ax,
color="#4F46E5",
alpha=0.7,
label="Tempo",
)
line_data.plot(
x="Inferência",
y="Média",
ax=line_ax,
color="#DC2626",
linestyle="--",
label="Média",
)
line_ax.set_title(
"Tempo de Inferência por Execução", pad=15, fontsize=12, color="#1f2937"
)
line_ax.set_xlabel("Número da Inferência", color="#374151")
line_ax.set_ylabel("Tempo (ms)", color="#374151")
line_ax.tick_params(colors="#4b5563")
line_ax.grid(True, linestyle="--", alpha=0.3)
line_ax.legend(frameon=True, facecolor="#f0f0f5", edgecolor="none")
hist_fig.tight_layout()
line_fig.tight_layout()
# Fechar as figuras para liberar memória
plt.close(hist_fig)
plt.close(line_fig)
return hist_fig, line_fig
def preprocess(self, img):
# Convert PIL Image to cv2 format
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Get image dimensions
self.img_height, self.img_width = img_cv2.shape[:2]
# Convert back to RGB for processing
img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)
# Resize
img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height))
# Normalize and transpose
image_data = np.array(img_resized) / 255.0
image_data = np.transpose(image_data, (2, 0, 1))
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
return image_data, img_cv2
def draw_detections(self, img, box, score, class_id):
x1, y1, w, h = box
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
color = self.color_palette[class_id]
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
label = f"{self.classes[class_id]}: {score:.2f}"
(label_width, label_height), _ = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
)
label_x = x1
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
cv2.rectangle(
img,
(int(label_x), int(label_y - label_height)),
(int(label_x + label_width), int(label_y + label_height)),
color,
cv2.FILLED,
)
cv2.putText(
img,
label,
(int(label_x), int(label_y)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0),
1,
cv2.LINE_AA,
)
def postprocess(self, input_image, output, conf_thres, iou_thres):
outputs = np.transpose(np.squeeze(output[0]))
rows = outputs.shape[0]
boxes = []
scores = []
class_ids = []
x_factor = self.img_width / self.input_width
y_factor = self.img_height / self.input_height
for i in range(rows):
classes_scores = outputs[i][4:]
max_score = np.amax(classes_scores)
if max_score >= conf_thres:
class_id = np.argmax(classes_scores)
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
left = int((x - w / 2) * x_factor)
top = int((y - h / 2) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
class_ids.append(class_id)
scores.append(max_score)
boxes.append([left, top, width, height])
indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres)
for i in indices:
box = boxes[i]
score = scores[i]
class_id = class_ids[i]
self.draw_detections(input_image, box, score, class_id)
return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
def detect(self, image, conf_thres=0.25, iou_thres=0.5):
# Preprocess the image
img_data, original_image = self.preprocess(image)
# Run inference
start_time = time.time()
outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data})
inference_time = (time.time() - start_time) * 1000 # Convert to milliseconds
# Postprocess the results
output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres)
self.update_metrics(inference_time)
return output_image, self.get_metrics()
def detect_example(self, image, conf_thres=0.25, iou_thres=0.5):
"""Wrapper method for examples that returns only the image"""
output_image, _ = self.detect(image, conf_thres, iou_thres)
return output_image
def create_gradio_interface():
# Download model if it doesn't exist
if not os.path.exists(MODEL_PATH):
download_model()
# Initialize the detector
detector = SignatureDetector(MODEL_PATH)
css = """
.custom-button {
background-color: #b0ffb8 !important;
color: black !important;
}
.custom-button:hover {
background-color: #b0ffb8b3 !important;
}
.container {
max-width: 1200px !important;
margin: auto !important;
}
.main-container {
gap: 20px !important;
}
.metrics-container {
padding: 1.5rem !important;
border-radius: 0.75rem !important;
background-color: #1f2937 !important;
margin: 1rem 0 !important;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
}
.metrics-title {
font-size: 1.25rem !important;
font-weight: 600 !important;
color: #1f2937 !important;
margin-bottom: 1rem !important;
}
"""
def process_image(image, conf_thres, iou_thres):
if image is None:
return None, None, None, None
output_image, metrics = detector.detect(image, conf_thres, iou_thres)
# Create plots data
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
indices = range(
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
)
line_data = pd.DataFrame(
{
"Inferência": indices,
"Tempo (ms)": metrics["times"],
"Média": [metrics["avg_time"]] * len(metrics["times"]),
}
)
# Criar plots
hist_fig, line_fig = detector.create_plots(hist_data, line_data)
return (
output_image,
gr.update(
value=f"Total de Inferências: {metrics['total_inferences']}",
container=True,
),
hist_fig,
line_fig,
)
def process_folder(files_path, conf_thres, iou_thres):
if not files_path:
return None, None, None, None
valid_extensions = [".jpg", ".jpeg", ".png"]
image_files = [
f for f in files_path if os.path.splitext(f.lower())[1] in valid_extensions
]
if not image_files:
return None, None, None, None
for img_file in image_files:
image = Image.open(img_file)
yield process_image(image, conf_thres, iou_thres)
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="indigo", secondary_hue="gray", neutral_hue="gray"
),
css=css,
) as iface:
gr.Markdown(
"""
# Tech4Humans - Detector de Assinaturas
Este sistema utiliza o modelo [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector), especialmente ajustado para a detecção de assinaturas manuscritas em imagens de documentos.
Com este detector, é possível identificar assinaturas em documentos digitais com elevada precisão em tempo real, sendo ideal para
aplicações que envolvem validação, organização e processamento de documentos.
---
"""
)
with gr.Row(equal_height=True, elem_classes="main-container"):
# Coluna da esquerda para controles e informações
with gr.Column(scale=1):
with gr.Tab("Imagem Única"):
input_image = gr.Image(
label="Faça o upload do seu documento", type="pil"
)
with gr.Row():
clear_single_btn = gr.ClearButton([input_image], value="Limpar")
detect_single_btn = gr.Button(
"Detectar", elem_classes="custom-button"
)
with gr.Tab("Pasta de Imagens"):
input_folder = gr.File(
label="Faça o upload de uma pasta com imagens",
file_count="directory",
type="filepath",
)
with gr.Row():
clear_folder_btn = gr.ClearButton(
[input_folder], value="Limpar"
)
detect_folder_btn = gr.Button(
"Detectar", elem_classes="custom-button"
)
with gr.Group():
confidence_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.25,
step=0.05,
label="Limiar de Confiança",
info="Ajuste a pontuação mínima de confiança necessária para detecção.",
)
iou_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
label="Limiar de IoU",
info="Ajuste o limiar de Interseção sobre União para Non Maximum Suppression (NMS).",
)
with gr.Column(scale=1):
output_image = gr.Image(label="Resultados da Detecção")
with gr.Accordion("Exemplos", open=True):
gr.Examples(
label="Exemplos de Imagens",
examples=[
["assets/images/example_{i}.jpg".format(i=i)]
for i in range(
0, len(os.listdir(os.path.join("assets", "images")))
)
],
inputs=input_image,
outputs=output_image,
fn=detector.detect_example,
cache_examples=True,
cache_mode="lazy",
)
with gr.Row(elem_classes="metrics-container"):
with gr.Column(scale=1):
total_inferences = gr.Textbox(
label="Total de Inferências", show_copy_button=True, container=True
)
hist_plot = gr.Plot(label="Distribuição dos Tempos", container=True)
with gr.Column(scale=1):
line_plot = gr.Plot(label="Histórico de Tempos", container=True)
with gr.Row(elem_classes="container"):
gr.Markdown(
"""
---
## Sobre o Projeto
Este projeto utiliza o modelo YOLOv8s ajustado para detecção de assinaturas manuscritas em imagens de documentos. Ele foi treinado com dados provenientes dos conjuntos [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) e [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), passando por processos de pré-processamento e aumentação de dados.
### Principais Métricas:
- **Precisão (Precision):** 94,74%
- **Revocação (Recall):** 89,72%
- **mAP@50:** 94,50%
- **mAP@50-95:** 67,35%
- **Tempo de Inferência (CPU):** 171,56 ms
O processo completo de treinamento, ajuste de hiperparâmetros, e avaliação do modelo pode ser consultado em detalhes no repositório abaixo.
[Leia o README completo no Hugging Face Models](https://huggingface.co/tech4humans/yolov8s-signature-detector)
---
**Desenvolvido por [Tech4Humans](https://www.tech4h.com.br/)** | **Modelo:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Datasets:** [Tobacco800](https://paperswithcode.com/dataset/tobacco-800), [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up)
"""
)
clear_single_btn.add([output_image])
clear_folder_btn.add([output_image])
detect_single_btn.click(
fn=process_image,
inputs=[input_image, confidence_threshold, iou_threshold],
outputs=[output_image, total_inferences, hist_plot, line_plot],
)
detect_folder_btn.click(
fn=process_folder,
inputs=[input_folder, confidence_threshold, iou_threshold],
outputs=[output_image, total_inferences, hist_plot, line_plot],
)
# Carregar métricas iniciais ao carregar a página
iface.load(
fn=detector.load_initial_metrics,
inputs=None,
outputs=[output_image, total_inferences, hist_plot, line_plot],
)
return iface
if __name__ == "__main__":
if not os.path.exists(DATABASE_PATH):
os.makedirs(DATABASE_DIR, exist_ok=True)
iface = create_gradio_interface()
iface.launch()
|