File size: 4,583 Bytes
4c0c8ad
bb770b6
 
 
9d6b1a8
18119f4
596e12a
9d6b1a8
4c0c8ad
9d6b1a8
 
 
4c0c8ad
 
9d6b1a8
1426741
9d6b1a8
 
7b937b1
 
9d6b1a8
7b937b1
 
9d6b1a8
 
7b937b1
92e98fb
9d6b1a8
 
7b937b1
9d6b1a8
 
7b937b1
 
9d6b1a8
 
7b937b1
1426741
18119f4
9d6b1a8
7b937b1
9d6b1a8
 
7b937b1
 
9d6b1a8
 
7b937b1
4c0c8ad
1426741
 
9d6b1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6ea9b
 
 
 
 
9e7ad63
 
9d6b1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import random
import streamlit as st
from transformers import pipeline

# Load the emotion analyzer model
emotion_analyzer = pipeline("text-classification", model="distilbert-base-uncased")

# Define the questions for mood analysis
questions = [
    "How are you feeling today in one word?",
    "What's currently on your mind?",
    "Do you feel calm or overwhelmed right now?",
]

# Define a suggestion database for different moods
suggestion_database = {
    "NEGATIVE": {
        "suggestions": ["Try guided meditation", "Take a walk in nature", "Connect with a loved one"],
        "articles": [
            {"title": "Emotional Wellness Toolkit", "url": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
            {"title": "Understanding Anxiety", "url": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
        ],
        "videos": [
            {"title": "Mindfulness for Calm", "url": "https://youtu.be/m1vaUGtyo-A"},
            {"title": "Relaxation Techniques", "url": "https://www.youtube.com/shorts/Tq49ajl7c8Q?feature=share"},
        ],
    },
    "POSITIVE": {
        "suggestions": ["Practice gratitude", "Engage in a hobby", "Celebrate your wins"],
        "articles": [
            {"title": "Benefits of Joy", "url": "https://www.health.harvard.edu/health-a-to-z"},
            {"title": "Gratitude Practices", "url": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"},
        ],
        "videos": [
            {"title": "Boosting Happiness", "url": "https://youtu.be/MIc299Flibs"},
            {"title": "Celebrating Wins", "url": "https://www.youtube.com/shorts/fwH8Ygb0K60?feature=share"},
        ],
    },
    "NEUTRAL": {
        "suggestions": ["Take a short break", "Engage in a relaxing activity", "Spend time outdoors"],
        "articles": [
            {"title": "Self-Care Practices", "url": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
            {"title": "Stress Management", "url": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
        ],
        "videos": [
            {"title": "Relaxation Exercises", "url": "https://youtu.be/Y8HIFRPU6pM"},
            {"title": "Mindfulness Tips", "url": "https://youtu.be/-e-4Kx5px_I"},
        ],
    },
}

# Function to fetch relevant resources based on detected mood
def get_relevant_resources(mood):
    resources = suggestion_database.get(mood, {})
    return resources.get("suggestions", []), resources.get("articles", []), resources.get("videos", [])

# Function to suggest activities based on the mood
def suggest_activity(mood):
    suggestions, articles, videos = get_relevant_resources(mood)
    return {
        "suggestions": suggestions,
        "articles": articles,
        "videos": videos,
    }

# Streamlit app
def main():
    st.title("Mood Analysis and Suggestions")
    st.write("Answer the following 3 questions to help us understand your mood:")

    # Collect responses
    responses = []
    for i, question in enumerate(questions):
        response = st.text_input(f"{i+1}. {question}")
        if response:
            responses.append(response)

    # Analyze responses if all questions are answered
    if len(responses) == len(questions):
        combined_text = " ".join(responses)
        analysis_result = emotion_analyzer(combined_text)
        detected_emotion = analysis_result[0]['label']

        # Map detected emotion to a mood state
        mood_mapping = {
            "LABEL_0": "NEGATIVE",  # for negative emotions
            "LABEL_1": "POSITIVE",  # for positive emotions
            "LABEL_2": "NEUTRAL",   # for neutral emotions
        }

        # Map the detected emotion into a proper mood
        mood = mood_mapping.get(detected_emotion, "NEUTRAL")

        st.write(f"Detected Mood: {mood}")

        # Fetch suggestions based on mood
        resources = suggest_activity(mood)

        # Display suggestions
        st.write("### Suggestions")
        for suggestion in resources["suggestions"]:
            st.write(f"- {suggestion}")

        # Display articles
        st.write("### Articles")
        for article in resources["articles"]:
            st.write(f"- [{article['title']}]({article['url']})")

        # Display videos
        st.write("### Videos")
        for video in resources["videos"]:
            st.write(f"- [{video['title']}]({video['url']})")
    else:
        st.write("Please answer all 3 questions to receive suggestions.")

if __name__ == "__main__":
    main()