tarrasyed19472007 commited on
Commit
1426741
·
verified ·
1 Parent(s): 993cea6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -15
app.py CHANGED
@@ -4,6 +4,58 @@ from transformers import pipeline
4
  # Load the emotion classification model
5
  emotion_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Streamlit app interface
8
  st.title("Emotion Prediction and Well-Being Suggestions")
9
 
@@ -17,20 +69,20 @@ if st.button("Get Suggestions"):
17
  user_input = f"{question1} {question2} {question3}"
18
 
19
  # Perform emotion analysis
20
- emotion = emotion_analyzer(user_input)
21
 
22
- # Provide suggestions based on emotion
23
- if "positive" in emotion[0]['label'].lower():
24
- suggestion = "It's great to hear that you're feeling positive! Consider doing a relaxing activity like walking on the beach or practicing mindfulness."
25
- video_url = "https://www.youtube.com/watch?v=1LkV2STw2so" # Example relaxation video
26
- elif "negative" in emotion[0]['label'].lower():
27
- suggestion = "It seems like you're experiencing some stress. Try deep breathing exercises or a walk in nature to relieve tension."
28
- video_url = "https://www.youtube.com/watch?v=5J5nZ9Tr6Cw" # Example deep breathing exercise video
29
- else:
30
- suggestion = "It seems like you're having a mixed experience. Balance your day with some light exercise like hula dancing or yoga."
31
- video_url = "https://www.youtube.com/watch?v=Hk4pJOPsFq4" # Example hula dancing video
32
 
33
- # Show suggestions and video
34
- st.write(suggestion)
35
- st.write(f"Check out this video for more guidance: {video_url}")
36
-
 
 
 
 
 
 
 
 
 
4
  # Load the emotion classification model
5
  emotion_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
6
 
7
+ # Enhanced Suggestion Database (Now includes resources)
8
+ suggestion_database = {
9
+ "sadness": {
10
+ "suggestions": ["Try a guided meditation", "Take a walk in nature", "Connect with a friend"],
11
+ "articles": [
12
+ {"title": "Overcoming Sadness", "url": "https://example.com/sadness1"},
13
+ {"title": "Understanding Depression", "url": "https://example.com/sadness2"},
14
+ ],
15
+ "videos": [
16
+ {"title": "Mindfulness for Sadness", "url": "https://www.youtube.com/watch?v=sadnessvideo1"},
17
+ {"title": "Coping with Grief", "url": "https://www.youtube.com/watch?v=sadnessvideo2"},
18
+ ],
19
+ },
20
+ "joy": {
21
+ "suggestions": ["Practice gratitude", "Engage in a hobby", "Spend time with loved ones"],
22
+ "articles": [
23
+ {"title": "The Benefits of Joy", "url": "https://example.com/joy1"},
24
+ {"title": "Maintaining Positive Emotions", "url": "https://example.com/joy2"},
25
+ ],
26
+ "videos": [
27
+ {"title": "Boosting Your Happiness", "url": "https://www.youtube.com/watch?v=joyvideo1"},
28
+ {"title": "Practicing Gratitude", "url": "https://www.youtube.com/watch?v=joyvideo2"},
29
+ ],
30
+ },
31
+ "neutral": {
32
+ "suggestions": ["Take a break", "Engage in a relaxing activity", "Spend time in nature"],
33
+ "articles": [
34
+ {"title": "Importance of Self-Care", "url": "https://example.com/selfcare1"},
35
+ {"title": "Stress Management Techniques", "url": "https://example.com/stress1"},
36
+ ],
37
+ "videos": [
38
+ {"title": "Relaxation Techniques", "url": "https://www.youtube.com/watch?v=relaxvideo1"},
39
+ {"title": "Mindfulness Exercises", "url": "https://www.youtube.com/watch?v=mindfulnessvideo1"},
40
+ ],
41
+ }
42
+ }
43
+
44
+ # Function to fetch relevant resources based on emotion
45
+ def get_relevant_resources(emotion):
46
+ resources = suggestion_database.get(emotion, {})
47
+ return resources.get("suggestions", []), resources.get("articles", []), resources.get("videos", [])
48
+
49
+ # Enhanced Suggestion Function
50
+ def suggest_activity(emotion_analysis):
51
+ max_emotion = max(emotion_analysis, key=emotion_analysis.get) if emotion_analysis else "neutral"
52
+ suggestions, articles, videos = get_relevant_resources(max_emotion)
53
+ return {
54
+ "suggestions": suggestions,
55
+ "articles": articles,
56
+ "videos": videos,
57
+ }
58
+
59
  # Streamlit app interface
60
  st.title("Emotion Prediction and Well-Being Suggestions")
61
 
 
69
  user_input = f"{question1} {question2} {question3}"
70
 
71
  # Perform emotion analysis
72
+ emotion_analysis = emotion_analyzer(user_input)
73
 
74
+ # Get suggestions, articles, and videos based on the emotion
75
+ resources = suggest_activity(emotion_analysis)
 
 
 
 
 
 
 
 
76
 
77
+ # Display suggestions, articles, and videos
78
+ st.write("Here are some suggestions to help you:")
79
+ for suggestion in resources["suggestions"]:
80
+ st.write(f"- {suggestion}")
81
+
82
+ st.write("Articles you may find helpful:")
83
+ for article in resources["articles"]:
84
+ st.markdown(f"[{article['title']}]({article['url']})")
85
+
86
+ st.write("Videos you may find helpful:")
87
+ for video in resources["videos"]:
88
+ st.markdown(f"[{video['title']}]({video['url']})")