Spaces:
Sleeping
Sleeping
File size: 7,170 Bytes
a77dfbc a9fe7c6 a77dfbc 112c544 bcf7c59 a77dfbc bcf7c59 a77dfbc bcf7c59 a77dfbc bcf7c59 9f3e04d a77dfbc bcf7c59 a77dfbc bcf7c59 05946ab bcf7c59 a77dfbc 052f6c8 a77dfbc 11d653c 05946ab 11d653c 052f6c8 174675d 6ba3f8f a77dfbc bcf7c59 defadc6 112c544 defadc6 13edd9b defadc6 5b26654 bcf7c59 5b26654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import streamlit as st
from transformers import pipeline
# Load emotion classification model
@st.cache_resource
def load_model():
try:
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
return emotion_classifier
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None
emotion_classifier = load_model()
# Well-being suggestions based on emotions
def get_well_being_suggestions(emotion):
suggestions = {
"joy": {
"text": "You're feeling joyful! Keep the positivity going.",
"links": [
"https://www.nih.gov/health-information/emotional-wellness-toolkit",
"https://www.health.harvard.edu/health-a-to-z",
"https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"
],
"videos": [
"https://youtu.be/m1vaUGtyo-A",
"https://youtu.be/MIc299Flibs"
]
},
"anger": {
"text": "You're feeling angry. Take a moment to calm down.",
"links": [
"https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
"https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"
],
"videos": [
"https://youtu.be/m1vaUGtyo-A",
"https://www.youtube.com/shorts/fwH8Ygb0K60?feature=share"
]
},
"sadness": {
"text": "You're feeling sad. It's okay to take a break.",
"links": [
"https://www.nih.gov/health-information/emotional-wellness-toolkit",
"https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"
],
"videos": [
"https://youtu.be/-e-4Kx5px_I",
"https://youtu.be/Y8HIFRPU6pM"
]
},
"fear": {
"text": "You're feeling fearful. Try some relaxation techniques.",
"links": [
"https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
"https://www.health.harvard.edu/health-a-to-z"
],
"videos": [
"https://www.youtube.com/shorts/Tq49ajl7c8Q?feature=share",
"https://youtu.be/yGKKz185M5o"
]
},
"disgust": {
"text": "You're feeling disgusted. Take a deep breath and refocus.",
"links": [
"https://www.health.harvard.edu/health-a-to-z",
"https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"
],
"videos": [
"https://youtu.be/MIc299Flibs",
"https://youtu.be/-e-4Kx5px_I"
]
},
# New addition for "Surprise"
"surprise": {
"text": "You're feeling surprised. Take a deep breath and ground yourself.",
"links": [
"https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
"https://www.health.harvard.edu/health-a-to-z",
"https://www.psychologytoday.com/us/blog/mindful-anger/201908/5-ways-to-deal-with-unexpected-surprises"
],
"videos": [
"https://youtu.be/MIc299Flibs",
"https://www.youtube.com/shorts/Tq49ajl7c8Q?feature=share",
"https://youtu.be/m1vaUGtyo-A"
]
},
}
return suggestions.get(emotion, {
"text": "Feeling neutral? That's okay! Take care of your mental health.",
"links": [],
"videos": []
})
# Streamlit UI
def main():
# Custom Styling for purple background and white text color
st.markdown("""
<style>
.stApp {
background-color: #6a0dad; /* Purple background */
background-size: cover;
background-position: center;
color: white; /* Set text color to white */
}
h1, h2, h3 {
color: white;
font-family: 'Arial', sans-serif;
}
.stTextArea textarea {
background-color: #f2f2f2; /* Light grey text area */
border-radius: 8px;
color: #333333;
}
.stButton button {
background-color: #9b4dca; /* Purple button */
color: white;
font-weight: bold;
border-radius: 5px;
}
.stButton button:hover {
background-color: #7a33a2; /* Darker purple on hover */
}
.stMarkdown, .stWrite {
color: white !important;
}
/* Style for links to make them more visible */
a {
color: #ffffff;
text-decoration: underline;
}
a:hover {
color: #ffccff; /* Light purple hover effect */
}
</style>
""", unsafe_allow_html=True)
# Title of the app
st.title("Emotion Prediction and Well-being Suggestions")
# User input for emotional state
st.header("Tell us how you're feeling today!")
user_input = st.text_area("Enter a short sentence about your current mood:", "")
if user_input:
# Display Enter button only after user has entered input
enter_button = st.button("Enter")
if enter_button:
# Clean the input text (stripping unnecessary spaces, lowercasing)
clean_input = user_input.strip().lower()
# Use the model to predict emotion
try:
result = emotion_classifier(clean_input)
st.write(f"Raw Model Result: {result}") # Debug output to see raw result
emotion = result[0]['label'].lower()
st.subheader(f"Emotion Detected: {emotion.capitalize()}")
# Get well-being suggestions based on emotion
suggestions = get_well_being_suggestions(emotion)
# Display text suggestions
st.write(suggestions["text"])
# Display links
if suggestions["links"]:
st.write("Useful Resources:")
for link in suggestions["links"]:
st.markdown(f"[{link}]({link})", unsafe_allow_html=True)
# Display video links
if suggestions["videos"]:
st.write("Relaxation Videos:")
for video in suggestions["videos"]:
st.markdown(f"[Watch here]({video})", unsafe_allow_html=True)
# Add a button for a summary
if st.button('Summary'):
st.write(f"Emotion detected: {emotion.capitalize()}. Here are your well-being suggestions to enhance your mood.")
st.write("Explore the links and videos to improve your emotional health!")
except Exception as e:
st.error(f"Error predicting emotion: {str(e)}")
# Run the Streamlit app
if __name__ == "__main__":
main()
|