Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
#
|
5 |
@st.cache_resource
|
6 |
def load_model():
|
7 |
try:
|
@@ -101,9 +101,12 @@ def main():
|
|
101 |
user_input = st.text_area("Enter a short sentence about your current mood:", "")
|
102 |
|
103 |
if user_input:
|
|
|
|
|
|
|
104 |
# Use the model to predict emotion
|
105 |
try:
|
106 |
-
result = emotion_classifier(
|
107 |
emotion = result[0]['label'].lower()
|
108 |
|
109 |
st.subheader(f"Emotion Detected: {emotion.capitalize()}")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load emotion classification model
|
5 |
@st.cache_resource
|
6 |
def load_model():
|
7 |
try:
|
|
|
101 |
user_input = st.text_area("Enter a short sentence about your current mood:", "")
|
102 |
|
103 |
if user_input:
|
104 |
+
# Clean the input text (stripping unnecessary spaces, lowercasing)
|
105 |
+
clean_input = user_input.strip().lower()
|
106 |
+
|
107 |
# Use the model to predict emotion
|
108 |
try:
|
109 |
+
result = emotion_classifier(clean_input)
|
110 |
emotion = result[0]['label'].lower()
|
111 |
|
112 |
st.subheader(f"Emotion Detected: {emotion.capitalize()}")
|