Spaces:
Sleeping
Sleeping
File size: 5,815 Bytes
a77dfbc a9fe7c6 a77dfbc 112c544 bcf7c59 a77dfbc bcf7c59 a77dfbc bcf7c59 a77dfbc bcf7c59 a77dfbc bcf7c59 a77dfbc bcf7c59 052f6c8 bcf7c59 a77dfbc 052f6c8 a77dfbc 11d653c 052f6c8 a77dfbc bcf7c59 112c544 bcf7c59 112c544 13edd9b bcf7c59 13edd9b bcf7c59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import streamlit as st
from transformers import pipeline
# Load emotion classification model
@st.cache_resource
def load_model():
try:
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
return emotion_classifier
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None
emotion_classifier = load_model()
# Well-being suggestions based on emotions
def get_well_being_suggestions(emotion):
suggestions = {
"joy": {
"text": "You're feeling joyful! Keep the positivity going.",
"links": [
"https://www.nih.gov/health-information/emotional-wellness-toolkit",
"https://www.health.harvard.edu/health-a-to-z",
"https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"
],
"videos": [
"https://youtu.be/m1vaUGtyo-A",
"https://youtu.be/MIc299Flibs"
]
},
"anger": {
"text": "You're feeling angry. Take a moment to calm down.",
"links": [
"https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
"https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"
],
"videos": [
"https://youtu.be/m1vaUGtyo-A",
"https://www.youtube.com/shorts/fwH8Ygb0K60?feature=share"
]
},
"sadness": {
"text": "You're feeling sad. It's okay to take a break.",
"links": [
"https://www.nih.gov/health-information/emotional-wellness-toolkit",
"https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"
],
"videos": [
"https://youtu.be/-e-4Kx5px_I",
"https://youtu.be/Y8HIFRPU6pM"
]
},
"fear": {
"text": "You're feeling fearful. Try some relaxation techniques.",
"links": [
"https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
"https://www.health.harvard.edu/health-a-to-z"
],
"videos": [
"https://www.youtube.com/shorts/Tq49ajl7c8Q?feature=share",
"https://youtu.be/yGKKz185M5o"
]
},
"disgust": {
"text": "You're feeling disgusted. Take a deep breath and refocus.",
"links": [
"https://www.health.harvard.edu/health-a-to-z",
"https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"
],
"videos": [
"https://youtu.be/MIc299Flibs",
"https://youtu.be/-e-4Kx5px_I"
]
},
}
return suggestions.get(emotion, {
"text": "Feeling neutral? That's okay! Take care of your mental health.",
"links": [],
"videos": []
})
# Streamlit UI
def main():
# Custom Styling for purple background
st.markdown("""
<style>
.stApp {
background-color: #6a0dad; /* Purple background */
background-size: cover;
background-position: center;
}
h1, h2, h3 {
color: white;
font-family: 'Arial', sans-serif;
}
.stTextArea textarea {
background-color: #f2f2f2; /* Light grey text area */
border-radius: 8px;
color: #333333;
}
.stButton button {
background-color: #9b4dca; /* Purple button */
color: white;
font-weight: bold;
border-radius: 5px;
}
.stButton button:hover {
background-color: #7a33a2; /* Darker purple on hover */
}
</style>
""", unsafe_allow_html=True)
# Title of the app
st.title("Emotion Prediction and Well-being Suggestions")
# User input for emotional state
st.header("Tell us how you're feeling today!")
user_input = st.text_area("Enter a short sentence about your current mood:", "")
if user_input:
# Clean the input text (stripping unnecessary spaces, lowercasing)
clean_input = user_input.strip().lower()
# Use the model to predict emotion
try:
result = emotion_classifier(clean_input)
st.write(f"Raw Model Result: {result}") # Debug output to see raw result
emotion = result[0]['label'].lower()
st.subheader(f"Emotion Detected: {emotion.capitalize()}")
# Get well-being suggestions based on emotion
suggestions = get_well_being_suggestions(emotion)
# Display text suggestions
st.write(suggestions["text"])
# Display links
if suggestions["links"]:
st.write("Useful Resources:")
for link in suggestions["links"]:
st.markdown(f"[{link}]({link})")
# Display video links
if suggestions["videos"]:
st.write("Relaxation Videos:")
for video in suggestions["videos"]:
st.markdown(f"[Watch here]({video})")
# Add a button for a summary
if st.button('Summary'):
st.write(f"Emotion detected: {emotion.capitalize()}. Here are your well-being suggestions to enhance your mood.")
st.write("Explore the links and videos to improve your emotional health!")
except Exception as e:
st.error(f"Error predicting emotion: {str(e)}")
# Run the Streamlit app
if __name__ == "__main__":
main()
|