|
import streamlit as st |
|
from haystack.generator.transformers import RAGenerator |
|
generator = RAGenerator(model_name_or_path="facebook/rag-token-nq", |
|
embed_title=False, num_beams=5) |
|
|
|
from haystack.pipeline import GenerativeQAPipeline |
|
pipe = GenerativeQAPipeline(generator=generator, retriever=dpr_retriever) |
|
|
|
def generate_answers(query, top_k_generator=3): |
|
preds = pipe.run(query=query, top_k_generator=top_k_generator, |
|
top_k_retriever=5, filters={"item_id":["B0074BW614"]}) |
|
st.write(f"Question: {preds['query']} \n") |
|
for idx in range(top_k_generator): |
|
st.write(f"Answer {idx+1}: {preds['answers'][idx]['answer']}") |
|
|
|
query = st.textarea("Enter the Query:") |
|
generate_answers(query) |