File size: 742 Bytes
2ffe950 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
import streamlit as st
from haystack.generator.transformers import RAGenerator
generator = RAGenerator(model_name_or_path="facebook/rag-token-nq",
embed_title=False, num_beams=5)
from haystack.pipeline import GenerativeQAPipeline
pipe = GenerativeQAPipeline(generator=generator, retriever=dpr_retriever)
def generate_answers(query, top_k_generator=3):
preds = pipe.run(query=query, top_k_generator=top_k_generator,
top_k_retriever=5, filters={"item_id":["B0074BW614"]})
st.write(f"Question: {preds['query']} \n")
for idx in range(top_k_generator):
st.write(f"Answer {idx+1}: {preds['answers'][idx]['answer']}")
query = st.textarea("Enter the Query:")
generate_answers(query) |