File size: 75,502 Bytes
92382b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3KDJWiA7bBx-",
"outputId": "984c5455-546d-44e8-c8f6-dc6135c8d4e5"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"I am feeling dizzy due to long lectures. What will my teacher suggest me?\n",
"\n",
"Answer: Your teacher will suggest you to take a break and rest for a while.\n",
"\n",
"Exercise\n"
]
}
],
"source": [
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"prompt=\"\"\n",
"if y==0:\n",
" prompt=\"I am feeling focussed while studying. What will my teacher suggest me?\"\n",
"elif y==1:\n",
" prompt=\"I am feeling dizzy due to long lectures. What will my teacher suggest me?\"\n",
"else:\n",
" prompt=\"I am feeling distracted. What will my teacher suggest me?\"\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(\"microsoft/phi-1_5\", trust_remote_code=True)\n",
"tokenizer = AutoTokenizer.from_pretrained(\"microsoft/phi-1_5\", trust_remote_code=True)\n",
"inputs = tokenizer(prompt, return_tensors=\"pt\", return_attention_mask=False)\n",
"\n",
"outputs = model.generate(**inputs, max_length=40)\n",
"text = tokenizer.batch_decode(outputs)[0]\n",
"print(text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "_XgovGHcme6Y",
"outputId": "09e9b010-8cb7-49b0-ac08-836cd95b8b7e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cloning into 'yolov5'...\n",
"remote: Enumerating objects: 16003, done.\u001b[K\n",
"remote: Counting objects: 100% (36/36), done.\u001b[K\n",
"remote: Compressing objects: 100% (23/23), done.\u001b[K\n",
"remote: Total 16003 (delta 21), reused 20 (delta 13), pack-reused 15967\u001b[K\n",
"Receiving objects: 100% (16003/16003), 14.60 MiB | 18.50 MiB/s, done.\n",
"Resolving deltas: 100% (10987/10987), done.\n"
]
}
],
"source": [
"!git clone https://github.com/ultralytics/yolov5"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "s3KUTzud0uZB",
"outputId": "f8b98b7e-4b5f-4515-8714-73cdc7514352"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cloning into 'yolov5'...\n",
"remote: Enumerating objects: 16008, done.\u001b[K\n",
"remote: Counting objects: 100% (41/41), done.\u001b[K\n",
"remote: Compressing objects: 100% (28/28), done.\u001b[K\n",
"remote: Total 16008 (delta 22), reused 20 (delta 13), pack-reused 15967\u001b[K\n",
"Receiving objects: 100% (16008/16008), 14.68 MiB | 23.23 MiB/s, done.\n",
"Resolving deltas: 100% (10988/10988), done.\n",
"/content/yolov5\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m190.0/190.0 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m641.7/641.7 kB\u001b[0m \u001b[31m34.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.7/62.7 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m155.3/155.3 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m178.7/178.7 kB\u001b[0m \u001b[31m18.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.1/49.1 MB\u001b[0m \u001b[31m16.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.8/67.8 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.0/69.0 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.5/54.5 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h"
]
}
],
"source": [
"!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
"%cd yolov5\n",
"%pip install -qr requirements.txt # install dependencies\n",
"%pip install -q roboflow\n",
"\n",
"import torch\n",
"import os\n",
"from IPython.display import Image, clear_output # to display images"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1gNIXDkVzj_p",
"outputId": "7b1aef2e-cad5-4833-d5b6-970666463a9b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: roboflow in /usr/local/lib/python3.10/dist-packages (1.1.7)\n",
"Requirement already satisfied: certifi==2022.12.7 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2022.12.7)\n",
"Requirement already satisfied: chardet==4.0.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.0.0)\n",
"Requirement already satisfied: cycler==0.10.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (0.10.0)\n",
"Requirement already satisfied: idna==2.10 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.10)\n",
"Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.4.5)\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from roboflow) (3.7.1)\n",
"Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.23.5)\n",
"Requirement already satisfied: opencv-python-headless==4.8.0.74 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.8.0.74)\n",
"Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from roboflow) (9.4.0)\n",
"Requirement already satisfied: pyparsing==2.4.7 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.4.7)\n",
"Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.8.2)\n",
"Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.0.0)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.31.0)\n",
"Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.16.0)\n",
"Requirement already satisfied: supervision in /usr/local/lib/python3.10/dist-packages (from roboflow) (0.15.0)\n",
"Requirement already satisfied: urllib3>=1.26.6 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.0.6)\n",
"Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.66.1)\n",
"Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from roboflow) (6.0.1)\n",
"Requirement already satisfied: requests-toolbelt in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.0.0)\n",
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (1.1.1)\n",
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (4.43.1)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (23.2)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->roboflow) (3.3.0)\n",
"Requirement already satisfied: scipy<2.0.0,>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from supervision->roboflow) (1.11.3)\n",
"loading Roboflow workspace...\n",
"loading Roboflow project...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading Dataset Version Zip in Engagement_level-1 to yolov5pytorch:: 100%|██████████| 1803/1803 [00:00<00:00, 13479.51it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Extracting Dataset Version Zip to Engagement_level-1 in yolov5pytorch:: 100%|██████████| 126/126 [00:00<00:00, 1721.71it/s]\n"
]
}
],
"source": [
"!pip install roboflow\n",
"\n",
"from roboflow import Roboflow\n",
"rf = Roboflow(api_key=\"0Re3AbuZXbz2nQGc3N0a\")\n",
"project = rf.workspace(\"indian-institute-of-technology-indore-kbon5\").project(\"engagement_level\")\n",
"dataset = project.version(1).download(\"yolov5\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true,
"base_uri": "https://localhost:8080/"
},
"id": "bCxkKRcG0Uf2",
"outputId": "bc521c02-dc45-41f8-fc3d-f29bf5678068"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=/content/yolov5/Engagement_level-1/data.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=700, batch_size=16, imgsz=320, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"YOLOv5 🚀 v7.0-227-ge4df1ec Python-3.10.12 torch-2.0.1+cu118 CPU\n",
"\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mComet: \u001b[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
"Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n",
"100% 755k/755k [00:00<00:00, 14.6MB/s]\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...\n",
"100% 14.1M/14.1M [00:00<00:00, 113MB/s] \n",
"\n",
"Overriding model.yaml nc=80 with nc=3\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
" 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
" 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
" 4 -1 2 115712 models.common.C3 [128, 128, 2] \n",
" 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
" 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
" 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
" 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n",
" 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n",
" 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
" 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 12 [-1, 6] 1 0 models.common.Concat [1] \n",
" 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
" 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
" 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 16 [-1, 4] 1 0 models.common.Concat [1] \n",
" 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
" 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
" 19 [-1, 14] 1 0 models.common.Concat [1] \n",
" 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
" 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
" 24 [17, 20, 23] 1 21576 models.yolo.Detect [3, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
"Model summary: 214 layers, 7027720 parameters, 7027720 gradients, 16.0 GFLOPs\n",
"\n",
"Transferred 343/349 items from yolov5s.pt\n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/yolov5/Engagement_level-1/train/labels... 60 images, 0 backgrounds, 0 corrupt: 100% 60/60 [00:00<00:00, 629.81it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/yolov5/Engagement_level-1/train/labels.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.0GB ram): 100% 60/60 [00:00<00:00, 223.23it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/yolov5/Engagement_level-1/train/labels.cache... 60 images, 0 backgrounds, 0 corrupt: 100% 60/60 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.0GB ram): 100% 60/60 [00:00<00:00, 126.25it/s]\n",
"\n",
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m5.00 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
"Plotting labels to runs/train/exp2/labels.jpg... \n",
"Image sizes 320 train, 320 val\n",
"Using 2 dataloader workers\n",
"Logging results to \u001b[1mruns/train/exp2\u001b[0m\n",
"Starting training for 700 epochs...\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 0/699 0G 0.1148 0.0167 0.04016 29 320: 100% 4/4 [00:28<00:00, 7.17s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:09<00:00, 4.74s/it]\n",
" all 60 60 0.00298 0.869 0.0118 0.00203\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 1/699 0G 0.1147 0.01767 0.04109 30 320: 100% 4/4 [00:23<00:00, 5.75s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.12s/it]\n",
" all 60 60 0.00326 0.967 0.01 0.00226\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 2/699 0G 0.09968 0.02034 0.04064 27 320: 100% 4/4 [00:23<00:00, 5.84s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.35s/it]\n",
" all 60 60 0.00337 1 0.0237 0.00569\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 3/699 0G 0.08664 0.02657 0.03916 28 320: 100% 4/4 [00:25<00:00, 6.47s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.21s/it]\n",
" all 60 60 0.00336 1 0.0397 0.0105\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 4/699 0G 0.07959 0.02711 0.03803 34 320: 100% 4/4 [00:24<00:00, 6.15s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.88s/it]\n",
" all 60 60 0.00335 1 0.0603 0.0147\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 5/699 0G 0.07814 0.02324 0.03974 23 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:10<00:00, 5.04s/it]\n",
" all 60 60 0.00336 1 0.0592 0.0148\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 6/699 0G 0.07563 0.02513 0.03911 25 320: 100% 4/4 [00:30<00:00, 7.63s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:09<00:00, 4.74s/it]\n",
" all 60 60 0.00334 1 0.123 0.0374\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 7/699 0G 0.06618 0.02476 0.03714 29 320: 100% 4/4 [00:23<00:00, 5.78s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.18s/it]\n",
" all 60 60 0.00336 1 0.133 0.0459\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 8/699 0G 0.06066 0.02808 0.03768 27 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.14s/it]\n",
" all 60 60 0.00336 1 0.211 0.0753\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 9/699 0G 0.06034 0.02794 0.03704 34 320: 100% 4/4 [00:25<00:00, 6.40s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.04s/it]\n",
" all 60 60 0.217 0.475 0.24 0.0817\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 10/699 0G 0.05864 0.02383 0.03743 22 320: 100% 4/4 [00:24<00:00, 6.19s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.70s/it]\n",
" all 60 60 0.185 0.497 0.185 0.0613\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 11/699 0G 0.05549 0.02169 0.03698 25 320: 100% 4/4 [00:22<00:00, 5.67s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.07s/it]\n",
" all 60 60 0.219 0.744 0.266 0.0939\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 12/699 0G 0.05677 0.02121 0.03696 30 320: 100% 4/4 [00:23<00:00, 5.88s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.14s/it]\n",
" all 60 60 0.0881 0.797 0.091 0.0345\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 13/699 0G 0.05718 0.01962 0.03654 26 320: 100% 4/4 [00:25<00:00, 6.47s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.94s/it]\n",
" all 60 60 0.279 0.693 0.371 0.116\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 14/699 0G 0.05638 0.02096 0.03626 26 320: 100% 4/4 [00:24<00:00, 6.17s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.72s/it]\n",
" all 60 60 0.079 0.437 0.08 0.019\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 15/699 0G 0.06284 0.01902 0.03492 26 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.03s/it]\n",
" all 60 60 0.356 0.718 0.447 0.157\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 16/699 0G 0.05699 0.01826 0.03609 28 320: 100% 4/4 [00:23<00:00, 5.78s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.01s/it]\n",
" all 60 60 0.248 0.717 0.27 0.131\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 17/699 0G 0.05251 0.01953 0.03538 31 320: 100% 4/4 [00:25<00:00, 6.37s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.86s/it]\n",
" all 60 60 0.108 0.401 0.139 0.0385\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 18/699 0G 0.06448 0.01601 0.03599 26 320: 100% 4/4 [00:23<00:00, 5.93s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.90s/it]\n",
" all 60 60 0.34 0.711 0.408 0.233\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 19/699 0G 0.05658 0.01938 0.03641 37 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.70s/it]\n",
" all 60 60 0.156 0.43 0.19 0.0587\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 20/699 0G 0.05194 0.01774 0.03616 26 320: 100% 4/4 [00:23<00:00, 5.95s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.83s/it]\n",
" all 60 60 0.34 0.673 0.353 0.12\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 21/699 0G 0.06204 0.01569 0.03604 26 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.26s/it]\n",
" all 60 60 0.264 0.708 0.366 0.123\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 22/699 0G 0.06121 0.01758 0.03578 37 320: 100% 4/4 [00:22<00:00, 5.68s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.24s/it]\n",
" all 60 60 0.173 0.376 0.322 0.106\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 23/699 0G 0.07099 0.01476 0.03562 25 320: 100% 4/4 [00:22<00:00, 5.68s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.01s/it]\n",
" all 60 60 0.327 0.55 0.396 0.0984\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 24/699 0G 0.05836 0.01664 0.0353 27 320: 100% 4/4 [00:26<00:00, 6.75s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.88s/it]\n",
" all 60 60 0.461 0.492 0.447 0.168\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 25/699 0G 0.06587 0.01786 0.03574 30 320: 100% 4/4 [00:28<00:00, 7.11s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.39s/it]\n",
" all 60 60 0.533 0.74 0.607 0.291\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 26/699 0G 0.04578 0.02054 0.03571 30 320: 100% 4/4 [00:22<00:00, 5.74s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.36s/it]\n",
" all 60 60 0.47 0.54 0.532 0.274\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 27/699 0G 0.05974 0.01675 0.03607 28 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.16s/it]\n",
" all 60 60 0.246 0.727 0.421 0.125\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 28/699 0G 0.05062 0.01656 0.03541 28 320: 100% 4/4 [00:25<00:00, 6.29s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.84s/it]\n",
" all 60 60 0.489 0.724 0.554 0.29\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 29/699 0G 0.04698 0.0172 0.03547 26 320: 100% 4/4 [00:24<00:00, 6.13s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.58s/it]\n",
" all 60 60 0.241 0.811 0.422 0.116\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 30/699 0G 0.05077 0.01703 0.03587 31 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.90s/it]\n",
" all 60 60 0.257 0.86 0.48 0.201\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 31/699 0G 0.04412 0.01677 0.03505 23 320: 100% 4/4 [00:23<00:00, 5.89s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.84s/it]\n",
" all 60 60 0.321 0.761 0.47 0.176\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 32/699 0G 0.04664 0.01736 0.03477 28 320: 100% 4/4 [00:25<00:00, 6.37s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.94s/it]\n",
" all 60 60 0.374 0.795 0.522 0.178\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 33/699 0G 0.04451 0.01787 0.03489 26 320: 100% 4/4 [00:22<00:00, 5.75s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.09s/it]\n",
" all 60 60 0.352 0.847 0.485 0.221\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 34/699 0G 0.05076 0.01444 0.03559 27 320: 100% 4/4 [00:22<00:00, 5.70s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.37s/it]\n",
" all 60 60 0.305 0.75 0.414 0.154\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 35/699 0G 0.04032 0.01536 0.03497 27 320: 100% 4/4 [00:25<00:00, 6.40s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.81s/it]\n",
" all 60 60 0.388 0.852 0.546 0.309\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 36/699 0G 0.04438 0.01546 0.03479 28 320: 100% 4/4 [00:25<00:00, 6.29s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.38s/it]\n",
" all 60 60 0.402 0.844 0.565 0.213\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 37/699 0G 0.04408 0.01283 0.03556 23 320: 100% 4/4 [00:23<00:00, 5.76s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.03s/it]\n",
" all 60 60 0.4 0.742 0.596 0.303\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 38/699 0G 0.04575 0.01548 0.0343 35 320: 100% 4/4 [00:23<00:00, 5.81s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.81s/it]\n",
" all 60 60 0.334 0.707 0.537 0.245\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 39/699 0G 0.04232 0.01121 0.03412 21 320: 100% 4/4 [00:25<00:00, 6.44s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.79s/it]\n",
" all 60 60 0.387 0.825 0.599 0.248\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 40/699 0G 0.04386 0.01466 0.03384 33 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.95s/it]\n",
" all 60 60 0.394 0.752 0.576 0.383\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 41/699 0G 0.04307 0.01365 0.03457 31 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.47s/it]\n",
" all 60 60 0.266 0.758 0.498 0.274\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 42/699 0G 0.04002 0.01534 0.03449 23 320: 100% 4/4 [00:24<00:00, 6.07s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.77s/it]\n",
" all 60 60 0.393 0.86 0.555 0.348\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 43/699 0G 0.0399 0.0134 0.03363 23 320: 100% 4/4 [00:25<00:00, 6.25s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.52s/it]\n",
" all 60 60 0.28 0.828 0.453 0.226\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 44/699 0G 0.03927 0.01396 0.0331 27 320: 100% 4/4 [00:23<00:00, 5.77s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:09<00:00, 4.53s/it]\n",
" all 60 60 0.376 0.93 0.568 0.315\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 45/699 0G 0.03745 0.01508 0.03355 36 320: 100% 4/4 [00:27<00:00, 6.78s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.86s/it]\n",
" all 60 60 0.38 0.869 0.565 0.264\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 46/699 0G 0.03465 0.01184 0.03348 26 320: 100% 4/4 [00:24<00:00, 6.05s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.82s/it]\n",
" all 60 60 0.367 0.912 0.57 0.247\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 47/699 0G 0.04088 0.01201 0.03438 25 320: 100% 4/4 [00:26<00:00, 6.61s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.80s/it]\n",
" all 60 60 0.397 0.851 0.601 0.271\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 48/699 0G 0.03646 0.01501 0.034 43 320: 100% 4/4 [00:23<00:00, 5.91s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.89s/it]\n",
" all 60 60 0.348 0.724 0.465 0.222\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 49/699 0G 0.04325 0.014 0.03281 31 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.66s/it]\n",
" all 60 60 0.404 0.982 0.589 0.342\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 50/699 0G 0.03406 0.01154 0.03347 26 320: 100% 4/4 [00:23<00:00, 6.00s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.80s/it]\n",
" all 60 60 0.235 0.773 0.367 0.207\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 51/699 0G 0.03759 0.01342 0.03353 30 320: 100% 4/4 [00:25<00:00, 6.34s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.11s/it]\n",
" all 60 60 0.397 0.982 0.639 0.32\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 52/699 0G 0.0387 0.01353 0.03291 26 320: 100% 4/4 [00:22<00:00, 5.72s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.25s/it]\n",
" all 60 60 0.451 0.947 0.68 0.395\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 53/699 0G 0.03778 0.01215 0.03339 26 320: 100% 4/4 [00:23<00:00, 5.78s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.08s/it]\n",
" all 60 60 0.522 0.875 0.599 0.245\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 54/699 0G 0.03745 0.01284 0.03309 32 320: 100% 4/4 [00:25<00:00, 6.26s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.78s/it]\n",
" all 60 60 0.564 0.935 0.708 0.451\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 55/699 0G 0.03718 0.01217 0.03413 29 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.51s/it]\n",
" all 60 60 0.601 0.889 0.692 0.304\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 56/699 0G 0.03642 0.01154 0.03118 32 320: 100% 4/4 [00:22<00:00, 5.70s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.74s/it]\n",
" all 60 60 0.59 0.914 0.742 0.36\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 57/699 0G 0.03416 0.01349 0.03268 33 320: 100% 4/4 [00:23<00:00, 5.92s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
" all 60 60 0.61 0.875 0.7 0.429\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 58/699 0G 0.03673 0.01111 0.03306 27 320: 100% 4/4 [00:25<00:00, 6.36s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.08s/it]\n",
" all 60 60 0.61 0.892 0.711 0.432\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 59/699 0G 0.0351 0.01197 0.031 24 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.14s/it]\n",
" all 60 60 0.592 0.915 0.695 0.363\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 60/699 0G 0.03514 0.01091 0.03113 25 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.10s/it]\n",
" all 60 60 0.546 0.967 0.694 0.341\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 61/699 0G 0.03712 0.01262 0.03181 31 320: 100% 4/4 [00:25<00:00, 6.31s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.84s/it]\n",
" all 60 60 0.616 0.982 0.725 0.452\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 62/699 0G 0.03396 0.01219 0.02939 33 320: 100% 4/4 [00:24<00:00, 6.19s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.73s/it]\n",
" all 60 60 0.515 0.982 0.659 0.326\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 63/699 0G 0.0387 0.01055 0.02881 24 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.03s/it]\n",
" all 60 60 0.618 0.965 0.718 0.427\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 64/699 0G 0.03284 0.01326 0.02932 35 320: 100% 4/4 [00:28<00:00, 7.22s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.11s/it]\n",
" all 60 60 0.501 0.982 0.661 0.393\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 65/699 0G 0.03798 0.01136 0.0309 25 320: 100% 4/4 [00:25<00:00, 6.25s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.80s/it]\n",
" all 60 60 0.614 0.982 0.73 0.419\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 66/699 0G 0.03059 0.009622 0.02893 24 320: 100% 4/4 [00:25<00:00, 6.26s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.53s/it]\n",
" all 60 60 0.603 0.967 0.781 0.505\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 67/699 0G 0.03361 0.01142 0.02786 27 320: 100% 4/4 [00:23<00:00, 5.77s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.80s/it]\n",
" all 60 60 0.634 0.936 0.753 0.421\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 68/699 0G 0.03537 0.01158 0.02716 24 320: 100% 4/4 [00:23<00:00, 5.87s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.77s/it]\n",
" all 60 60 0.655 0.991 0.798 0.54\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 69/699 0G 0.03452 0.01018 0.02948 28 320: 100% 4/4 [00:25<00:00, 6.38s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.02s/it]\n",
" all 60 60 0.644 0.886 0.753 0.364\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 70/699 0G 0.03341 0.009742 0.02731 27 320: 100% 4/4 [00:23<00:00, 5.92s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.05s/it]\n",
" all 60 60 0.567 0.724 0.711 0.393\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 71/699 0G 0.03094 0.01166 0.02678 33 320: 100% 4/4 [00:23<00:00, 5.77s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.38s/it]\n",
" all 60 60 0.447 0.91 0.73 0.434\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 72/699 0G 0.03755 0.01128 0.02623 33 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.78s/it]\n",
" all 60 60 0.43 0.951 0.694 0.427\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 73/699 0G 0.03761 0.01068 0.0281 30 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.35s/it]\n",
" all 60 60 0.535 0.956 0.716 0.438\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 74/699 0G 0.03308 0.01139 0.02612 23 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.91s/it]\n",
" all 60 60 0.573 0.898 0.741 0.452\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 75/699 0G 0.03102 0.01173 0.02708 28 320: 100% 4/4 [00:23<00:00, 5.83s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.76s/it]\n",
" all 60 60 0.514 0.952 0.692 0.431\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 76/699 0G 0.03709 0.01031 0.02376 23 320: 100% 4/4 [00:25<00:00, 6.48s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.85s/it]\n",
" all 60 60 0.508 0.967 0.69 0.399\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 77/699 0G 0.03827 0.01099 0.02481 26 320: 100% 4/4 [00:23<00:00, 5.82s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 4.00s/it]\n",
" all 60 60 0.658 0.963 0.715 0.457\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 78/699 0G 0.03286 0.01102 0.02549 24 320: 100% 4/4 [00:23<00:00, 5.76s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.36s/it]\n",
" all 60 60 0.502 0.979 0.62 0.416\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 79/699 0G 0.03589 0.009822 0.02551 25 320: 100% 4/4 [00:24<00:00, 6.13s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.85s/it]\n",
" all 60 60 0.657 0.97 0.693 0.387\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 80/699 0G 0.03114 0.01074 0.02764 26 320: 100% 4/4 [00:24<00:00, 6.19s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.44s/it]\n",
" all 60 60 0.654 1 0.742 0.51\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 81/699 0G 0.03239 0.01028 0.02404 26 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.81s/it]\n",
" all 60 60 0.577 1 0.731 0.391\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 82/699 0G 0.03369 0.01099 0.02669 29 320: 100% 4/4 [00:23<00:00, 5.95s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
" all 60 60 0.637 1 0.725 0.488\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 83/699 0G 0.02982 0.009387 0.0239 22 320: 100% 4/4 [00:25<00:00, 6.41s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:10<00:00, 5.24s/it]\n",
" all 60 60 0.588 0.965 0.711 0.341\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 84/699 0G 0.03417 0.01011 0.02602 31 320: 100% 4/4 [00:25<00:00, 6.35s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.29s/it]\n",
" all 60 60 0.575 0.965 0.717 0.462\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 85/699 0G 0.03453 0.01181 0.0269 23 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.17s/it]\n",
" all 60 60 0.648 0.917 0.724 0.496\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 86/699 0G 0.02949 0.01067 0.02333 24 320: 100% 4/4 [00:22<00:00, 5.73s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.93s/it]\n",
" all 60 60 0.503 0.912 0.65 0.451\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 87/699 0G 0.03346 0.01068 0.02476 33 320: 100% 4/4 [00:25<00:00, 6.36s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
" all 60 60 0.62 0.895 0.708 0.468\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 88/699 0G 0.02915 0.009806 0.02347 26 320: 100% 4/4 [00:23<00:00, 5.96s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.42s/it]\n",
" all 60 60 0.463 0.895 0.65 0.397\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 89/699 0G 0.03496 0.01053 0.0263 24 320: 100% 4/4 [00:22<00:00, 5.68s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.02s/it]\n",
" all 60 60 0.638 0.908 0.724 0.525\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 90/699 0G 0.02987 0.01084 0.02232 34 320: 100% 4/4 [00:22<00:00, 5.58s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.30s/it]\n",
" all 60 60 0.52 0.895 0.691 0.445\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 91/699 0G 0.03242 0.01009 0.0243 30 320: 100% 4/4 [00:24<00:00, 6.02s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
" all 60 60 0.546 0.923 0.698 0.465\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 92/699 0G 0.03015 0.01085 0.0251 28 320: 100% 4/4 [00:25<00:00, 6.26s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.79s/it]\n",
" all 60 60 0.644 0.979 0.725 0.485\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 93/699 0G 0.03176 0.01122 0.02344 28 320: 100% 4/4 [00:24<00:00, 6.07s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.63s/it]\n",
" all 60 60 0.655 1 0.736 0.498\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 94/699 0G 0.02912 0.009009 0.02374 26 320: 100% 4/4 [00:22<00:00, 5.63s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.08s/it]\n",
" all 60 60 0.605 0.983 0.759 0.553\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 95/699 0G 0.02835 0.01039 0.02398 28 320: 100% 4/4 [00:22<00:00, 5.57s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.05s/it]\n",
" all 60 60 0.654 0.995 0.764 0.534\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 96/699 0G 0.03042 0.01005 0.02304 29 320: 100% 4/4 [00:24<00:00, 6.10s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.84s/it]\n",
" all 60 60 0.466 0.989 0.706 0.474\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 97/699 0G 0.03237 0.01039 0.02538 26 320: 100% 4/4 [00:25<00:00, 6.33s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.78s/it]\n",
" all 60 60 0.667 0.97 0.774 0.546\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 98/699 0G 0.028 0.01091 0.02253 34 320: 100% 4/4 [00:23<00:00, 5.84s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.61s/it]\n",
" all 60 60 0.664 0.962 0.788 0.506\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 99/699 0G 0.03103 0.01049 0.0224 33 320: 100% 4/4 [00:22<00:00, 5.66s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.79s/it]\n",
" all 60 60 0.638 0.969 0.783 0.552\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 100/699 0G 0.03054 0.01104 0.02552 28 320: 100% 4/4 [00:22<00:00, 5.66s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.15s/it]\n",
" all 60 60 0.574 0.983 0.795 0.525\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 101/699 0G 0.03317 0.008246 0.02154 22 320: 100% 4/4 [00:24<00:00, 6.07s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.80s/it]\n",
" all 60 60 0.642 0.956 0.779 0.529\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 102/699 0G 0.03023 0.01114 0.02024 32 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.85s/it]\n",
" all 60 60 0.643 0.967 0.792 0.549\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 103/699 0G 0.02919 0.01021 0.02096 29 320: 100% 4/4 [00:22<00:00, 5.66s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.83s/it]\n",
" all 60 60 0.645 0.961 0.777 0.528\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 104/699 0G 0.03228 0.01075 0.02334 25 320: 100% 4/4 [00:22<00:00, 5.63s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.57s/it]\n",
" all 60 60 0.59 0.885 0.753 0.482\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 105/699 0G 0.02729 0.01029 0.02099 29 320: 100% 4/4 [00:23<00:00, 5.85s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.83s/it]\n",
" all 60 60 0.573 0.887 0.755 0.503\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 106/699 0G 0.02997 0.01115 0.02439 26 320: 100% 4/4 [00:24<00:00, 6.20s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
" all 60 60 0.54 0.904 0.754 0.531\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 107/699 0G 0.02859 0.009621 0.02264 21 320: 100% 4/4 [00:24<00:00, 6.04s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.16s/it]\n",
" all 60 60 0.519 0.858 0.752 0.519\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 108/699 0G 0.0273 0.009638 0.02336 24 320: 100% 4/4 [00:22<00:00, 5.62s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.03s/it]\n",
" all 60 60 0.508 0.838 0.743 0.455\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 109/699 0G 0.03021 0.01023 0.0197 26 320: 100% 4/4 [00:22<00:00, 5.66s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.51s/it]\n",
" all 60 60 0.512 0.74 0.735 0.506\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 110/699 0G 0.02915 0.01089 0.02271 29 320: 100% 4/4 [00:23<00:00, 5.87s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.79s/it]\n",
" all 60 60 0.504 0.79 0.745 0.49\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 111/699 0G 0.02836 0.01115 0.02252 31 320: 100% 4/4 [00:25<00:00, 6.30s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.74s/it]\n",
" all 60 60 0.546 0.824 0.754 0.501\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 112/699 0G 0.02872 0.009921 0.02214 29 320: 100% 4/4 [00:23<00:00, 5.96s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.40s/it]\n",
" all 60 60 0.572 0.84 0.759 0.461\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 113/699 0G 0.0324 0.01026 0.02254 30 320: 75% 3/4 [00:19<00:06, 6.30s/it]"
]
}
],
"source": [
"!python train.py --img 320 --batch 16 --epochs 700 --data /content/yolov5/Engagement_level-1/data.yaml --weights yolov5s.pt --cache"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|