Commit
·
92382b8
1
Parent(s):
b40344b
Finetuning Yolov5 using annotations from RoboFlow
Browse files- Yolov5_finetuning.ipynb +870 -0
Yolov5_finetuning.ipynb
ADDED
@@ -0,0 +1,870 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"id": "3KDJWiA7bBx-",
|
11 |
+
"outputId": "984c5455-546d-44e8-c8f6-dc6135c8d4e5"
|
12 |
+
},
|
13 |
+
"outputs": [
|
14 |
+
{
|
15 |
+
"name": "stderr",
|
16 |
+
"output_type": "stream",
|
17 |
+
"text": [
|
18 |
+
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"name": "stdout",
|
23 |
+
"output_type": "stream",
|
24 |
+
"text": [
|
25 |
+
"I am feeling dizzy due to long lectures. What will my teacher suggest me?\n",
|
26 |
+
"\n",
|
27 |
+
"Answer: Your teacher will suggest you to take a break and rest for a while.\n",
|
28 |
+
"\n",
|
29 |
+
"Exercise\n"
|
30 |
+
]
|
31 |
+
}
|
32 |
+
],
|
33 |
+
"source": [
|
34 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
35 |
+
"prompt=\"\"\n",
|
36 |
+
"if y==0:\n",
|
37 |
+
" prompt=\"I am feeling focussed while studying. What will my teacher suggest me?\"\n",
|
38 |
+
"elif y==1:\n",
|
39 |
+
" prompt=\"I am feeling dizzy due to long lectures. What will my teacher suggest me?\"\n",
|
40 |
+
"else:\n",
|
41 |
+
" prompt=\"I am feeling distracted. What will my teacher suggest me?\"\n",
|
42 |
+
"\n",
|
43 |
+
"model = AutoModelForCausalLM.from_pretrained(\"microsoft/phi-1_5\", trust_remote_code=True)\n",
|
44 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"microsoft/phi-1_5\", trust_remote_code=True)\n",
|
45 |
+
"inputs = tokenizer(prompt, return_tensors=\"pt\", return_attention_mask=False)\n",
|
46 |
+
"\n",
|
47 |
+
"outputs = model.generate(**inputs, max_length=40)\n",
|
48 |
+
"text = tokenizer.batch_decode(outputs)[0]\n",
|
49 |
+
"print(text)"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"metadata": {
|
56 |
+
"colab": {
|
57 |
+
"base_uri": "https://localhost:8080/"
|
58 |
+
},
|
59 |
+
"id": "_XgovGHcme6Y",
|
60 |
+
"outputId": "09e9b010-8cb7-49b0-ac08-836cd95b8b7e"
|
61 |
+
},
|
62 |
+
"outputs": [
|
63 |
+
{
|
64 |
+
"name": "stdout",
|
65 |
+
"output_type": "stream",
|
66 |
+
"text": [
|
67 |
+
"Cloning into 'yolov5'...\n",
|
68 |
+
"remote: Enumerating objects: 16003, done.\u001b[K\n",
|
69 |
+
"remote: Counting objects: 100% (36/36), done.\u001b[K\n",
|
70 |
+
"remote: Compressing objects: 100% (23/23), done.\u001b[K\n",
|
71 |
+
"remote: Total 16003 (delta 21), reused 20 (delta 13), pack-reused 15967\u001b[K\n",
|
72 |
+
"Receiving objects: 100% (16003/16003), 14.60 MiB | 18.50 MiB/s, done.\n",
|
73 |
+
"Resolving deltas: 100% (10987/10987), done.\n"
|
74 |
+
]
|
75 |
+
}
|
76 |
+
],
|
77 |
+
"source": [
|
78 |
+
"!git clone https://github.com/ultralytics/yolov5"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"metadata": {
|
85 |
+
"colab": {
|
86 |
+
"base_uri": "https://localhost:8080/"
|
87 |
+
},
|
88 |
+
"id": "s3KUTzud0uZB",
|
89 |
+
"outputId": "f8b98b7e-4b5f-4515-8714-73cdc7514352"
|
90 |
+
},
|
91 |
+
"outputs": [
|
92 |
+
{
|
93 |
+
"name": "stdout",
|
94 |
+
"output_type": "stream",
|
95 |
+
"text": [
|
96 |
+
"Cloning into 'yolov5'...\n",
|
97 |
+
"remote: Enumerating objects: 16008, done.\u001b[K\n",
|
98 |
+
"remote: Counting objects: 100% (41/41), done.\u001b[K\n",
|
99 |
+
"remote: Compressing objects: 100% (28/28), done.\u001b[K\n",
|
100 |
+
"remote: Total 16008 (delta 22), reused 20 (delta 13), pack-reused 15967\u001b[K\n",
|
101 |
+
"Receiving objects: 100% (16008/16008), 14.68 MiB | 23.23 MiB/s, done.\n",
|
102 |
+
"Resolving deltas: 100% (10988/10988), done.\n",
|
103 |
+
"/content/yolov5\n",
|
104 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m190.0/190.0 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
105 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m641.7/641.7 kB\u001b[0m \u001b[31m34.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
106 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.7/62.7 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
107 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
108 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m155.3/155.3 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
109 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m178.7/178.7 kB\u001b[0m \u001b[31m18.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
110 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
111 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.1/49.1 MB\u001b[0m \u001b[31m16.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
112 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.8/67.8 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
113 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.0/69.0 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
114 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.5/54.5 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
115 |
+
"\u001b[?25h"
|
116 |
+
]
|
117 |
+
}
|
118 |
+
],
|
119 |
+
"source": [
|
120 |
+
"!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
|
121 |
+
"%cd yolov5\n",
|
122 |
+
"%pip install -qr requirements.txt # install dependencies\n",
|
123 |
+
"%pip install -q roboflow\n",
|
124 |
+
"\n",
|
125 |
+
"import torch\n",
|
126 |
+
"import os\n",
|
127 |
+
"from IPython.display import Image, clear_output # to display images"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": null,
|
133 |
+
"metadata": {
|
134 |
+
"colab": {
|
135 |
+
"base_uri": "https://localhost:8080/"
|
136 |
+
},
|
137 |
+
"id": "1gNIXDkVzj_p",
|
138 |
+
"outputId": "7b1aef2e-cad5-4833-d5b6-970666463a9b"
|
139 |
+
},
|
140 |
+
"outputs": [
|
141 |
+
{
|
142 |
+
"name": "stdout",
|
143 |
+
"output_type": "stream",
|
144 |
+
"text": [
|
145 |
+
"Requirement already satisfied: roboflow in /usr/local/lib/python3.10/dist-packages (1.1.7)\n",
|
146 |
+
"Requirement already satisfied: certifi==2022.12.7 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2022.12.7)\n",
|
147 |
+
"Requirement already satisfied: chardet==4.0.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.0.0)\n",
|
148 |
+
"Requirement already satisfied: cycler==0.10.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (0.10.0)\n",
|
149 |
+
"Requirement already satisfied: idna==2.10 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.10)\n",
|
150 |
+
"Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.4.5)\n",
|
151 |
+
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from roboflow) (3.7.1)\n",
|
152 |
+
"Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.23.5)\n",
|
153 |
+
"Requirement already satisfied: opencv-python-headless==4.8.0.74 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.8.0.74)\n",
|
154 |
+
"Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from roboflow) (9.4.0)\n",
|
155 |
+
"Requirement already satisfied: pyparsing==2.4.7 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.4.7)\n",
|
156 |
+
"Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.8.2)\n",
|
157 |
+
"Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.0.0)\n",
|
158 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.31.0)\n",
|
159 |
+
"Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.16.0)\n",
|
160 |
+
"Requirement already satisfied: supervision in /usr/local/lib/python3.10/dist-packages (from roboflow) (0.15.0)\n",
|
161 |
+
"Requirement already satisfied: urllib3>=1.26.6 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.0.6)\n",
|
162 |
+
"Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.66.1)\n",
|
163 |
+
"Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from roboflow) (6.0.1)\n",
|
164 |
+
"Requirement already satisfied: requests-toolbelt in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.0.0)\n",
|
165 |
+
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (1.1.1)\n",
|
166 |
+
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (4.43.1)\n",
|
167 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (23.2)\n",
|
168 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->roboflow) (3.3.0)\n",
|
169 |
+
"Requirement already satisfied: scipy<2.0.0,>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from supervision->roboflow) (1.11.3)\n",
|
170 |
+
"loading Roboflow workspace...\n",
|
171 |
+
"loading Roboflow project...\n"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"name": "stderr",
|
176 |
+
"output_type": "stream",
|
177 |
+
"text": [
|
178 |
+
"Downloading Dataset Version Zip in Engagement_level-1 to yolov5pytorch:: 100%|██████████| 1803/1803 [00:00<00:00, 13479.51it/s]"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"name": "stdout",
|
183 |
+
"output_type": "stream",
|
184 |
+
"text": [
|
185 |
+
"\n"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"name": "stderr",
|
190 |
+
"output_type": "stream",
|
191 |
+
"text": [
|
192 |
+
"\n",
|
193 |
+
"Extracting Dataset Version Zip to Engagement_level-1 in yolov5pytorch:: 100%|██████████| 126/126 [00:00<00:00, 1721.71it/s]\n"
|
194 |
+
]
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"source": [
|
198 |
+
"!pip install roboflow\n",
|
199 |
+
"\n",
|
200 |
+
"from roboflow import Roboflow\n",
|
201 |
+
"rf = Roboflow(api_key=\"0Re3AbuZXbz2nQGc3N0a\")\n",
|
202 |
+
"project = rf.workspace(\"indian-institute-of-technology-indore-kbon5\").project(\"engagement_level\")\n",
|
203 |
+
"dataset = project.version(1).download(\"yolov5\")"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "code",
|
208 |
+
"execution_count": null,
|
209 |
+
"metadata": {
|
210 |
+
"colab": {
|
211 |
+
"background_save": true,
|
212 |
+
"base_uri": "https://localhost:8080/"
|
213 |
+
},
|
214 |
+
"id": "bCxkKRcG0Uf2",
|
215 |
+
"outputId": "bc521c02-dc45-41f8-fc3d-f29bf5678068"
|
216 |
+
},
|
217 |
+
"outputs": [
|
218 |
+
{
|
219 |
+
"name": "stdout",
|
220 |
+
"output_type": "stream",
|
221 |
+
"text": [
|
222 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=/content/yolov5/Engagement_level-1/data.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=700, batch_size=16, imgsz=320, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
|
223 |
+
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
|
224 |
+
"YOLOv5 🚀 v7.0-227-ge4df1ec Python-3.10.12 torch-2.0.1+cu118 CPU\n",
|
225 |
+
"\n",
|
226 |
+
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
|
227 |
+
"\u001b[34m\u001b[1mComet: \u001b[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet\n",
|
228 |
+
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
229 |
+
"Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n",
|
230 |
+
"100% 755k/755k [00:00<00:00, 14.6MB/s]\n",
|
231 |
+
"Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...\n",
|
232 |
+
"100% 14.1M/14.1M [00:00<00:00, 113MB/s] \n",
|
233 |
+
"\n",
|
234 |
+
"Overriding model.yaml nc=80 with nc=3\n",
|
235 |
+
"\n",
|
236 |
+
" from n params module arguments \n",
|
237 |
+
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
|
238 |
+
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
|
239 |
+
" 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
|
240 |
+
" 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
|
241 |
+
" 4 -1 2 115712 models.common.C3 [128, 128, 2] \n",
|
242 |
+
" 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
|
243 |
+
" 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
|
244 |
+
" 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
|
245 |
+
" 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n",
|
246 |
+
" 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n",
|
247 |
+
" 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
|
248 |
+
" 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
249 |
+
" 12 [-1, 6] 1 0 models.common.Concat [1] \n",
|
250 |
+
" 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
|
251 |
+
" 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
|
252 |
+
" 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
253 |
+
" 16 [-1, 4] 1 0 models.common.Concat [1] \n",
|
254 |
+
" 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
|
255 |
+
" 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
|
256 |
+
" 19 [-1, 14] 1 0 models.common.Concat [1] \n",
|
257 |
+
" 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
|
258 |
+
" 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
|
259 |
+
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
|
260 |
+
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
261 |
+
" 24 [17, 20, 23] 1 21576 models.yolo.Detect [3, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
|
262 |
+
"Model summary: 214 layers, 7027720 parameters, 7027720 gradients, 16.0 GFLOPs\n",
|
263 |
+
"\n",
|
264 |
+
"Transferred 343/349 items from yolov5s.pt\n",
|
265 |
+
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
|
266 |
+
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
|
267 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/yolov5/Engagement_level-1/train/labels... 60 images, 0 backgrounds, 0 corrupt: 100% 60/60 [00:00<00:00, 629.81it/s]\n",
|
268 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/yolov5/Engagement_level-1/train/labels.cache\n",
|
269 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.0GB ram): 100% 60/60 [00:00<00:00, 223.23it/s]\n",
|
270 |
+
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/yolov5/Engagement_level-1/train/labels.cache... 60 images, 0 backgrounds, 0 corrupt: 100% 60/60 [00:00<?, ?it/s]\n",
|
271 |
+
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.0GB ram): 100% 60/60 [00:00<00:00, 126.25it/s]\n",
|
272 |
+
"\n",
|
273 |
+
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m5.00 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
|
274 |
+
"Plotting labels to runs/train/exp2/labels.jpg... \n",
|
275 |
+
"Image sizes 320 train, 320 val\n",
|
276 |
+
"Using 2 dataloader workers\n",
|
277 |
+
"Logging results to \u001b[1mruns/train/exp2\u001b[0m\n",
|
278 |
+
"Starting training for 700 epochs...\n",
|
279 |
+
"\n",
|
280 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
281 |
+
" 0/699 0G 0.1148 0.0167 0.04016 29 320: 100% 4/4 [00:28<00:00, 7.17s/it]\n",
|
282 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:09<00:00, 4.74s/it]\n",
|
283 |
+
" all 60 60 0.00298 0.869 0.0118 0.00203\n",
|
284 |
+
"\n",
|
285 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
286 |
+
" 1/699 0G 0.1147 0.01767 0.04109 30 320: 100% 4/4 [00:23<00:00, 5.75s/it]\n",
|
287 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.12s/it]\n",
|
288 |
+
" all 60 60 0.00326 0.967 0.01 0.00226\n",
|
289 |
+
"\n",
|
290 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
291 |
+
" 2/699 0G 0.09968 0.02034 0.04064 27 320: 100% 4/4 [00:23<00:00, 5.84s/it]\n",
|
292 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.35s/it]\n",
|
293 |
+
" all 60 60 0.00337 1 0.0237 0.00569\n",
|
294 |
+
"\n",
|
295 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
296 |
+
" 3/699 0G 0.08664 0.02657 0.03916 28 320: 100% 4/4 [00:25<00:00, 6.47s/it]\n",
|
297 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.21s/it]\n",
|
298 |
+
" all 60 60 0.00336 1 0.0397 0.0105\n",
|
299 |
+
"\n",
|
300 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
301 |
+
" 4/699 0G 0.07959 0.02711 0.03803 34 320: 100% 4/4 [00:24<00:00, 6.15s/it]\n",
|
302 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.88s/it]\n",
|
303 |
+
" all 60 60 0.00335 1 0.0603 0.0147\n",
|
304 |
+
"\n",
|
305 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
306 |
+
" 5/699 0G 0.07814 0.02324 0.03974 23 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
|
307 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:10<00:00, 5.04s/it]\n",
|
308 |
+
" all 60 60 0.00336 1 0.0592 0.0148\n",
|
309 |
+
"\n",
|
310 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
311 |
+
" 6/699 0G 0.07563 0.02513 0.03911 25 320: 100% 4/4 [00:30<00:00, 7.63s/it]\n",
|
312 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:09<00:00, 4.74s/it]\n",
|
313 |
+
" all 60 60 0.00334 1 0.123 0.0374\n",
|
314 |
+
"\n",
|
315 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
316 |
+
" 7/699 0G 0.06618 0.02476 0.03714 29 320: 100% 4/4 [00:23<00:00, 5.78s/it]\n",
|
317 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.18s/it]\n",
|
318 |
+
" all 60 60 0.00336 1 0.133 0.0459\n",
|
319 |
+
"\n",
|
320 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
321 |
+
" 8/699 0G 0.06066 0.02808 0.03768 27 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
|
322 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.14s/it]\n",
|
323 |
+
" all 60 60 0.00336 1 0.211 0.0753\n",
|
324 |
+
"\n",
|
325 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
326 |
+
" 9/699 0G 0.06034 0.02794 0.03704 34 320: 100% 4/4 [00:25<00:00, 6.40s/it]\n",
|
327 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.04s/it]\n",
|
328 |
+
" all 60 60 0.217 0.475 0.24 0.0817\n",
|
329 |
+
"\n",
|
330 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
331 |
+
" 10/699 0G 0.05864 0.02383 0.03743 22 320: 100% 4/4 [00:24<00:00, 6.19s/it]\n",
|
332 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.70s/it]\n",
|
333 |
+
" all 60 60 0.185 0.497 0.185 0.0613\n",
|
334 |
+
"\n",
|
335 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
336 |
+
" 11/699 0G 0.05549 0.02169 0.03698 25 320: 100% 4/4 [00:22<00:00, 5.67s/it]\n",
|
337 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.07s/it]\n",
|
338 |
+
" all 60 60 0.219 0.744 0.266 0.0939\n",
|
339 |
+
"\n",
|
340 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
341 |
+
" 12/699 0G 0.05677 0.02121 0.03696 30 320: 100% 4/4 [00:23<00:00, 5.88s/it]\n",
|
342 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.14s/it]\n",
|
343 |
+
" all 60 60 0.0881 0.797 0.091 0.0345\n",
|
344 |
+
"\n",
|
345 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
346 |
+
" 13/699 0G 0.05718 0.01962 0.03654 26 320: 100% 4/4 [00:25<00:00, 6.47s/it]\n",
|
347 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.94s/it]\n",
|
348 |
+
" all 60 60 0.279 0.693 0.371 0.116\n",
|
349 |
+
"\n",
|
350 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
351 |
+
" 14/699 0G 0.05638 0.02096 0.03626 26 320: 100% 4/4 [00:24<00:00, 6.17s/it]\n",
|
352 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.72s/it]\n",
|
353 |
+
" all 60 60 0.079 0.437 0.08 0.019\n",
|
354 |
+
"\n",
|
355 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
356 |
+
" 15/699 0G 0.06284 0.01902 0.03492 26 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
|
357 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.03s/it]\n",
|
358 |
+
" all 60 60 0.356 0.718 0.447 0.157\n",
|
359 |
+
"\n",
|
360 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
361 |
+
" 16/699 0G 0.05699 0.01826 0.03609 28 320: 100% 4/4 [00:23<00:00, 5.78s/it]\n",
|
362 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.01s/it]\n",
|
363 |
+
" all 60 60 0.248 0.717 0.27 0.131\n",
|
364 |
+
"\n",
|
365 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
366 |
+
" 17/699 0G 0.05251 0.01953 0.03538 31 320: 100% 4/4 [00:25<00:00, 6.37s/it]\n",
|
367 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.86s/it]\n",
|
368 |
+
" all 60 60 0.108 0.401 0.139 0.0385\n",
|
369 |
+
"\n",
|
370 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
371 |
+
" 18/699 0G 0.06448 0.01601 0.03599 26 320: 100% 4/4 [00:23<00:00, 5.93s/it]\n",
|
372 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.90s/it]\n",
|
373 |
+
" all 60 60 0.34 0.711 0.408 0.233\n",
|
374 |
+
"\n",
|
375 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
376 |
+
" 19/699 0G 0.05658 0.01938 0.03641 37 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
|
377 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.70s/it]\n",
|
378 |
+
" all 60 60 0.156 0.43 0.19 0.0587\n",
|
379 |
+
"\n",
|
380 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
381 |
+
" 20/699 0G 0.05194 0.01774 0.03616 26 320: 100% 4/4 [00:23<00:00, 5.95s/it]\n",
|
382 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.83s/it]\n",
|
383 |
+
" all 60 60 0.34 0.673 0.353 0.12\n",
|
384 |
+
"\n",
|
385 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
386 |
+
" 21/699 0G 0.06204 0.01569 0.03604 26 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
|
387 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.26s/it]\n",
|
388 |
+
" all 60 60 0.264 0.708 0.366 0.123\n",
|
389 |
+
"\n",
|
390 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
391 |
+
" 22/699 0G 0.06121 0.01758 0.03578 37 320: 100% 4/4 [00:22<00:00, 5.68s/it]\n",
|
392 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.24s/it]\n",
|
393 |
+
" all 60 60 0.173 0.376 0.322 0.106\n",
|
394 |
+
"\n",
|
395 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
396 |
+
" 23/699 0G 0.07099 0.01476 0.03562 25 320: 100% 4/4 [00:22<00:00, 5.68s/it]\n",
|
397 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.01s/it]\n",
|
398 |
+
" all 60 60 0.327 0.55 0.396 0.0984\n",
|
399 |
+
"\n",
|
400 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
401 |
+
" 24/699 0G 0.05836 0.01664 0.0353 27 320: 100% 4/4 [00:26<00:00, 6.75s/it]\n",
|
402 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.88s/it]\n",
|
403 |
+
" all 60 60 0.461 0.492 0.447 0.168\n",
|
404 |
+
"\n",
|
405 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
406 |
+
" 25/699 0G 0.06587 0.01786 0.03574 30 320: 100% 4/4 [00:28<00:00, 7.11s/it]\n",
|
407 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.39s/it]\n",
|
408 |
+
" all 60 60 0.533 0.74 0.607 0.291\n",
|
409 |
+
"\n",
|
410 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
411 |
+
" 26/699 0G 0.04578 0.02054 0.03571 30 320: 100% 4/4 [00:22<00:00, 5.74s/it]\n",
|
412 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.36s/it]\n",
|
413 |
+
" all 60 60 0.47 0.54 0.532 0.274\n",
|
414 |
+
"\n",
|
415 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
416 |
+
" 27/699 0G 0.05974 0.01675 0.03607 28 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
|
417 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.16s/it]\n",
|
418 |
+
" all 60 60 0.246 0.727 0.421 0.125\n",
|
419 |
+
"\n",
|
420 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
421 |
+
" 28/699 0G 0.05062 0.01656 0.03541 28 320: 100% 4/4 [00:25<00:00, 6.29s/it]\n",
|
422 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.84s/it]\n",
|
423 |
+
" all 60 60 0.489 0.724 0.554 0.29\n",
|
424 |
+
"\n",
|
425 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
426 |
+
" 29/699 0G 0.04698 0.0172 0.03547 26 320: 100% 4/4 [00:24<00:00, 6.13s/it]\n",
|
427 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.58s/it]\n",
|
428 |
+
" all 60 60 0.241 0.811 0.422 0.116\n",
|
429 |
+
"\n",
|
430 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
431 |
+
" 30/699 0G 0.05077 0.01703 0.03587 31 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
|
432 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.90s/it]\n",
|
433 |
+
" all 60 60 0.257 0.86 0.48 0.201\n",
|
434 |
+
"\n",
|
435 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
436 |
+
" 31/699 0G 0.04412 0.01677 0.03505 23 320: 100% 4/4 [00:23<00:00, 5.89s/it]\n",
|
437 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.84s/it]\n",
|
438 |
+
" all 60 60 0.321 0.761 0.47 0.176\n",
|
439 |
+
"\n",
|
440 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
441 |
+
" 32/699 0G 0.04664 0.01736 0.03477 28 320: 100% 4/4 [00:25<00:00, 6.37s/it]\n",
|
442 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.94s/it]\n",
|
443 |
+
" all 60 60 0.374 0.795 0.522 0.178\n",
|
444 |
+
"\n",
|
445 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
446 |
+
" 33/699 0G 0.04451 0.01787 0.03489 26 320: 100% 4/4 [00:22<00:00, 5.75s/it]\n",
|
447 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.09s/it]\n",
|
448 |
+
" all 60 60 0.352 0.847 0.485 0.221\n",
|
449 |
+
"\n",
|
450 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
451 |
+
" 34/699 0G 0.05076 0.01444 0.03559 27 320: 100% 4/4 [00:22<00:00, 5.70s/it]\n",
|
452 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.37s/it]\n",
|
453 |
+
" all 60 60 0.305 0.75 0.414 0.154\n",
|
454 |
+
"\n",
|
455 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
456 |
+
" 35/699 0G 0.04032 0.01536 0.03497 27 320: 100% 4/4 [00:25<00:00, 6.40s/it]\n",
|
457 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.81s/it]\n",
|
458 |
+
" all 60 60 0.388 0.852 0.546 0.309\n",
|
459 |
+
"\n",
|
460 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
461 |
+
" 36/699 0G 0.04438 0.01546 0.03479 28 320: 100% 4/4 [00:25<00:00, 6.29s/it]\n",
|
462 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.38s/it]\n",
|
463 |
+
" all 60 60 0.402 0.844 0.565 0.213\n",
|
464 |
+
"\n",
|
465 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
466 |
+
" 37/699 0G 0.04408 0.01283 0.03556 23 320: 100% 4/4 [00:23<00:00, 5.76s/it]\n",
|
467 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.03s/it]\n",
|
468 |
+
" all 60 60 0.4 0.742 0.596 0.303\n",
|
469 |
+
"\n",
|
470 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
471 |
+
" 38/699 0G 0.04575 0.01548 0.0343 35 320: 100% 4/4 [00:23<00:00, 5.81s/it]\n",
|
472 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.81s/it]\n",
|
473 |
+
" all 60 60 0.334 0.707 0.537 0.245\n",
|
474 |
+
"\n",
|
475 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
476 |
+
" 39/699 0G 0.04232 0.01121 0.03412 21 320: 100% 4/4 [00:25<00:00, 6.44s/it]\n",
|
477 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.79s/it]\n",
|
478 |
+
" all 60 60 0.387 0.825 0.599 0.248\n",
|
479 |
+
"\n",
|
480 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
481 |
+
" 40/699 0G 0.04386 0.01466 0.03384 33 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
|
482 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.95s/it]\n",
|
483 |
+
" all 60 60 0.394 0.752 0.576 0.383\n",
|
484 |
+
"\n",
|
485 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
486 |
+
" 41/699 0G 0.04307 0.01365 0.03457 31 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
|
487 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.47s/it]\n",
|
488 |
+
" all 60 60 0.266 0.758 0.498 0.274\n",
|
489 |
+
"\n",
|
490 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
491 |
+
" 42/699 0G 0.04002 0.01534 0.03449 23 320: 100% 4/4 [00:24<00:00, 6.07s/it]\n",
|
492 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.77s/it]\n",
|
493 |
+
" all 60 60 0.393 0.86 0.555 0.348\n",
|
494 |
+
"\n",
|
495 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
496 |
+
" 43/699 0G 0.0399 0.0134 0.03363 23 320: 100% 4/4 [00:25<00:00, 6.25s/it]\n",
|
497 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.52s/it]\n",
|
498 |
+
" all 60 60 0.28 0.828 0.453 0.226\n",
|
499 |
+
"\n",
|
500 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
501 |
+
" 44/699 0G 0.03927 0.01396 0.0331 27 320: 100% 4/4 [00:23<00:00, 5.77s/it]\n",
|
502 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:09<00:00, 4.53s/it]\n",
|
503 |
+
" all 60 60 0.376 0.93 0.568 0.315\n",
|
504 |
+
"\n",
|
505 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
506 |
+
" 45/699 0G 0.03745 0.01508 0.03355 36 320: 100% 4/4 [00:27<00:00, 6.78s/it]\n",
|
507 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.86s/it]\n",
|
508 |
+
" all 60 60 0.38 0.869 0.565 0.264\n",
|
509 |
+
"\n",
|
510 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
511 |
+
" 46/699 0G 0.03465 0.01184 0.03348 26 320: 100% 4/4 [00:24<00:00, 6.05s/it]\n",
|
512 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.82s/it]\n",
|
513 |
+
" all 60 60 0.367 0.912 0.57 0.247\n",
|
514 |
+
"\n",
|
515 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
516 |
+
" 47/699 0G 0.04088 0.01201 0.03438 25 320: 100% 4/4 [00:26<00:00, 6.61s/it]\n",
|
517 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.80s/it]\n",
|
518 |
+
" all 60 60 0.397 0.851 0.601 0.271\n",
|
519 |
+
"\n",
|
520 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
521 |
+
" 48/699 0G 0.03646 0.01501 0.034 43 320: 100% 4/4 [00:23<00:00, 5.91s/it]\n",
|
522 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.89s/it]\n",
|
523 |
+
" all 60 60 0.348 0.724 0.465 0.222\n",
|
524 |
+
"\n",
|
525 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
526 |
+
" 49/699 0G 0.04325 0.014 0.03281 31 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
|
527 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.66s/it]\n",
|
528 |
+
" all 60 60 0.404 0.982 0.589 0.342\n",
|
529 |
+
"\n",
|
530 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
531 |
+
" 50/699 0G 0.03406 0.01154 0.03347 26 320: 100% 4/4 [00:23<00:00, 6.00s/it]\n",
|
532 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.80s/it]\n",
|
533 |
+
" all 60 60 0.235 0.773 0.367 0.207\n",
|
534 |
+
"\n",
|
535 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
536 |
+
" 51/699 0G 0.03759 0.01342 0.03353 30 320: 100% 4/4 [00:25<00:00, 6.34s/it]\n",
|
537 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.11s/it]\n",
|
538 |
+
" all 60 60 0.397 0.982 0.639 0.32\n",
|
539 |
+
"\n",
|
540 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
541 |
+
" 52/699 0G 0.0387 0.01353 0.03291 26 320: 100% 4/4 [00:22<00:00, 5.72s/it]\n",
|
542 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.25s/it]\n",
|
543 |
+
" all 60 60 0.451 0.947 0.68 0.395\n",
|
544 |
+
"\n",
|
545 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
546 |
+
" 53/699 0G 0.03778 0.01215 0.03339 26 320: 100% 4/4 [00:23<00:00, 5.78s/it]\n",
|
547 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.08s/it]\n",
|
548 |
+
" all 60 60 0.522 0.875 0.599 0.245\n",
|
549 |
+
"\n",
|
550 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
551 |
+
" 54/699 0G 0.03745 0.01284 0.03309 32 320: 100% 4/4 [00:25<00:00, 6.26s/it]\n",
|
552 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.78s/it]\n",
|
553 |
+
" all 60 60 0.564 0.935 0.708 0.451\n",
|
554 |
+
"\n",
|
555 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
556 |
+
" 55/699 0G 0.03718 0.01217 0.03413 29 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
|
557 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.51s/it]\n",
|
558 |
+
" all 60 60 0.601 0.889 0.692 0.304\n",
|
559 |
+
"\n",
|
560 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
561 |
+
" 56/699 0G 0.03642 0.01154 0.03118 32 320: 100% 4/4 [00:22<00:00, 5.70s/it]\n",
|
562 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.74s/it]\n",
|
563 |
+
" all 60 60 0.59 0.914 0.742 0.36\n",
|
564 |
+
"\n",
|
565 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
566 |
+
" 57/699 0G 0.03416 0.01349 0.03268 33 320: 100% 4/4 [00:23<00:00, 5.92s/it]\n",
|
567 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
|
568 |
+
" all 60 60 0.61 0.875 0.7 0.429\n",
|
569 |
+
"\n",
|
570 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
571 |
+
" 58/699 0G 0.03673 0.01111 0.03306 27 320: 100% 4/4 [00:25<00:00, 6.36s/it]\n",
|
572 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.08s/it]\n",
|
573 |
+
" all 60 60 0.61 0.892 0.711 0.432\n",
|
574 |
+
"\n",
|
575 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
576 |
+
" 59/699 0G 0.0351 0.01197 0.031 24 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
|
577 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.14s/it]\n",
|
578 |
+
" all 60 60 0.592 0.915 0.695 0.363\n",
|
579 |
+
"\n",
|
580 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
581 |
+
" 60/699 0G 0.03514 0.01091 0.03113 25 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
|
582 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.10s/it]\n",
|
583 |
+
" all 60 60 0.546 0.967 0.694 0.341\n",
|
584 |
+
"\n",
|
585 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
586 |
+
" 61/699 0G 0.03712 0.01262 0.03181 31 320: 100% 4/4 [00:25<00:00, 6.31s/it]\n",
|
587 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.84s/it]\n",
|
588 |
+
" all 60 60 0.616 0.982 0.725 0.452\n",
|
589 |
+
"\n",
|
590 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
591 |
+
" 62/699 0G 0.03396 0.01219 0.02939 33 320: 100% 4/4 [00:24<00:00, 6.19s/it]\n",
|
592 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.73s/it]\n",
|
593 |
+
" all 60 60 0.515 0.982 0.659 0.326\n",
|
594 |
+
"\n",
|
595 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
596 |
+
" 63/699 0G 0.0387 0.01055 0.02881 24 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
|
597 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.03s/it]\n",
|
598 |
+
" all 60 60 0.618 0.965 0.718 0.427\n",
|
599 |
+
"\n",
|
600 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
601 |
+
" 64/699 0G 0.03284 0.01326 0.02932 35 320: 100% 4/4 [00:28<00:00, 7.22s/it]\n",
|
602 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.11s/it]\n",
|
603 |
+
" all 60 60 0.501 0.982 0.661 0.393\n",
|
604 |
+
"\n",
|
605 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
606 |
+
" 65/699 0G 0.03798 0.01136 0.0309 25 320: 100% 4/4 [00:25<00:00, 6.25s/it]\n",
|
607 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.80s/it]\n",
|
608 |
+
" all 60 60 0.614 0.982 0.73 0.419\n",
|
609 |
+
"\n",
|
610 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
611 |
+
" 66/699 0G 0.03059 0.009622 0.02893 24 320: 100% 4/4 [00:25<00:00, 6.26s/it]\n",
|
612 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.53s/it]\n",
|
613 |
+
" all 60 60 0.603 0.967 0.781 0.505\n",
|
614 |
+
"\n",
|
615 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
616 |
+
" 67/699 0G 0.03361 0.01142 0.02786 27 320: 100% 4/4 [00:23<00:00, 5.77s/it]\n",
|
617 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.80s/it]\n",
|
618 |
+
" all 60 60 0.634 0.936 0.753 0.421\n",
|
619 |
+
"\n",
|
620 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
621 |
+
" 68/699 0G 0.03537 0.01158 0.02716 24 320: 100% 4/4 [00:23<00:00, 5.87s/it]\n",
|
622 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.77s/it]\n",
|
623 |
+
" all 60 60 0.655 0.991 0.798 0.54\n",
|
624 |
+
"\n",
|
625 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
626 |
+
" 69/699 0G 0.03452 0.01018 0.02948 28 320: 100% 4/4 [00:25<00:00, 6.38s/it]\n",
|
627 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.02s/it]\n",
|
628 |
+
" all 60 60 0.644 0.886 0.753 0.364\n",
|
629 |
+
"\n",
|
630 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
631 |
+
" 70/699 0G 0.03341 0.009742 0.02731 27 320: 100% 4/4 [00:23<00:00, 5.92s/it]\n",
|
632 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.05s/it]\n",
|
633 |
+
" all 60 60 0.567 0.724 0.711 0.393\n",
|
634 |
+
"\n",
|
635 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
636 |
+
" 71/699 0G 0.03094 0.01166 0.02678 33 320: 100% 4/4 [00:23<00:00, 5.77s/it]\n",
|
637 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.38s/it]\n",
|
638 |
+
" all 60 60 0.447 0.91 0.73 0.434\n",
|
639 |
+
"\n",
|
640 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
641 |
+
" 72/699 0G 0.03755 0.01128 0.02623 33 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
|
642 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.78s/it]\n",
|
643 |
+
" all 60 60 0.43 0.951 0.694 0.427\n",
|
644 |
+
"\n",
|
645 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
646 |
+
" 73/699 0G 0.03761 0.01068 0.0281 30 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
|
647 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.35s/it]\n",
|
648 |
+
" all 60 60 0.535 0.956 0.716 0.438\n",
|
649 |
+
"\n",
|
650 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
651 |
+
" 74/699 0G 0.03308 0.01139 0.02612 23 320: 100% 4/4 [00:23<00:00, 5.79s/it]\n",
|
652 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.91s/it]\n",
|
653 |
+
" all 60 60 0.573 0.898 0.741 0.452\n",
|
654 |
+
"\n",
|
655 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
656 |
+
" 75/699 0G 0.03102 0.01173 0.02708 28 320: 100% 4/4 [00:23<00:00, 5.83s/it]\n",
|
657 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.76s/it]\n",
|
658 |
+
" all 60 60 0.514 0.952 0.692 0.431\n",
|
659 |
+
"\n",
|
660 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
661 |
+
" 76/699 0G 0.03709 0.01031 0.02376 23 320: 100% 4/4 [00:25<00:00, 6.48s/it]\n",
|
662 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.85s/it]\n",
|
663 |
+
" all 60 60 0.508 0.967 0.69 0.399\n",
|
664 |
+
"\n",
|
665 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
666 |
+
" 77/699 0G 0.03827 0.01099 0.02481 26 320: 100% 4/4 [00:23<00:00, 5.82s/it]\n",
|
667 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 4.00s/it]\n",
|
668 |
+
" all 60 60 0.658 0.963 0.715 0.457\n",
|
669 |
+
"\n",
|
670 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
671 |
+
" 78/699 0G 0.03286 0.01102 0.02549 24 320: 100% 4/4 [00:23<00:00, 5.76s/it]\n",
|
672 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.36s/it]\n",
|
673 |
+
" all 60 60 0.502 0.979 0.62 0.416\n",
|
674 |
+
"\n",
|
675 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
676 |
+
" 79/699 0G 0.03589 0.009822 0.02551 25 320: 100% 4/4 [00:24<00:00, 6.13s/it]\n",
|
677 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.85s/it]\n",
|
678 |
+
" all 60 60 0.657 0.97 0.693 0.387\n",
|
679 |
+
"\n",
|
680 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
681 |
+
" 80/699 0G 0.03114 0.01074 0.02764 26 320: 100% 4/4 [00:24<00:00, 6.19s/it]\n",
|
682 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.44s/it]\n",
|
683 |
+
" all 60 60 0.654 1 0.742 0.51\n",
|
684 |
+
"\n",
|
685 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
686 |
+
" 81/699 0G 0.03239 0.01028 0.02404 26 320: 100% 4/4 [00:22<00:00, 5.71s/it]\n",
|
687 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.81s/it]\n",
|
688 |
+
" all 60 60 0.577 1 0.731 0.391\n",
|
689 |
+
"\n",
|
690 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
691 |
+
" 82/699 0G 0.03369 0.01099 0.02669 29 320: 100% 4/4 [00:23<00:00, 5.95s/it]\n",
|
692 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
|
693 |
+
" all 60 60 0.637 1 0.725 0.488\n",
|
694 |
+
"\n",
|
695 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
696 |
+
" 83/699 0G 0.02982 0.009387 0.0239 22 320: 100% 4/4 [00:25<00:00, 6.41s/it]\n",
|
697 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:10<00:00, 5.24s/it]\n",
|
698 |
+
" all 60 60 0.588 0.965 0.711 0.341\n",
|
699 |
+
"\n",
|
700 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
701 |
+
" 84/699 0G 0.03417 0.01011 0.02602 31 320: 100% 4/4 [00:25<00:00, 6.35s/it]\n",
|
702 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.29s/it]\n",
|
703 |
+
" all 60 60 0.575 0.965 0.717 0.462\n",
|
704 |
+
"\n",
|
705 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
706 |
+
" 85/699 0G 0.03453 0.01181 0.0269 23 320: 100% 4/4 [00:23<00:00, 5.80s/it]\n",
|
707 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.17s/it]\n",
|
708 |
+
" all 60 60 0.648 0.917 0.724 0.496\n",
|
709 |
+
"\n",
|
710 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
711 |
+
" 86/699 0G 0.02949 0.01067 0.02333 24 320: 100% 4/4 [00:22<00:00, 5.73s/it]\n",
|
712 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.93s/it]\n",
|
713 |
+
" all 60 60 0.503 0.912 0.65 0.451\n",
|
714 |
+
"\n",
|
715 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
716 |
+
" 87/699 0G 0.03346 0.01068 0.02476 33 320: 100% 4/4 [00:25<00:00, 6.36s/it]\n",
|
717 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
|
718 |
+
" all 60 60 0.62 0.895 0.708 0.468\n",
|
719 |
+
"\n",
|
720 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
721 |
+
" 88/699 0G 0.02915 0.009806 0.02347 26 320: 100% 4/4 [00:23<00:00, 5.96s/it]\n",
|
722 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.42s/it]\n",
|
723 |
+
" all 60 60 0.463 0.895 0.65 0.397\n",
|
724 |
+
"\n",
|
725 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
726 |
+
" 89/699 0G 0.03496 0.01053 0.0263 24 320: 100% 4/4 [00:22<00:00, 5.68s/it]\n",
|
727 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.02s/it]\n",
|
728 |
+
" all 60 60 0.638 0.908 0.724 0.525\n",
|
729 |
+
"\n",
|
730 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
731 |
+
" 90/699 0G 0.02987 0.01084 0.02232 34 320: 100% 4/4 [00:22<00:00, 5.58s/it]\n",
|
732 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.30s/it]\n",
|
733 |
+
" all 60 60 0.52 0.895 0.691 0.445\n",
|
734 |
+
"\n",
|
735 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
736 |
+
" 91/699 0G 0.03242 0.01009 0.0243 30 320: 100% 4/4 [00:24<00:00, 6.02s/it]\n",
|
737 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
|
738 |
+
" all 60 60 0.546 0.923 0.698 0.465\n",
|
739 |
+
"\n",
|
740 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
741 |
+
" 92/699 0G 0.03015 0.01085 0.0251 28 320: 100% 4/4 [00:25<00:00, 6.26s/it]\n",
|
742 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.79s/it]\n",
|
743 |
+
" all 60 60 0.644 0.979 0.725 0.485\n",
|
744 |
+
"\n",
|
745 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
746 |
+
" 93/699 0G 0.03176 0.01122 0.02344 28 320: 100% 4/4 [00:24<00:00, 6.07s/it]\n",
|
747 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.63s/it]\n",
|
748 |
+
" all 60 60 0.655 1 0.736 0.498\n",
|
749 |
+
"\n",
|
750 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
751 |
+
" 94/699 0G 0.02912 0.009009 0.02374 26 320: 100% 4/4 [00:22<00:00, 5.63s/it]\n",
|
752 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.08s/it]\n",
|
753 |
+
" all 60 60 0.605 0.983 0.759 0.553\n",
|
754 |
+
"\n",
|
755 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
756 |
+
" 95/699 0G 0.02835 0.01039 0.02398 28 320: 100% 4/4 [00:22<00:00, 5.57s/it]\n",
|
757 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.05s/it]\n",
|
758 |
+
" all 60 60 0.654 0.995 0.764 0.534\n",
|
759 |
+
"\n",
|
760 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
761 |
+
" 96/699 0G 0.03042 0.01005 0.02304 29 320: 100% 4/4 [00:24<00:00, 6.10s/it]\n",
|
762 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.84s/it]\n",
|
763 |
+
" all 60 60 0.466 0.989 0.706 0.474\n",
|
764 |
+
"\n",
|
765 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
766 |
+
" 97/699 0G 0.03237 0.01039 0.02538 26 320: 100% 4/4 [00:25<00:00, 6.33s/it]\n",
|
767 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.78s/it]\n",
|
768 |
+
" all 60 60 0.667 0.97 0.774 0.546\n",
|
769 |
+
"\n",
|
770 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
771 |
+
" 98/699 0G 0.028 0.01091 0.02253 34 320: 100% 4/4 [00:23<00:00, 5.84s/it]\n",
|
772 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.61s/it]\n",
|
773 |
+
" all 60 60 0.664 0.962 0.788 0.506\n",
|
774 |
+
"\n",
|
775 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
776 |
+
" 99/699 0G 0.03103 0.01049 0.0224 33 320: 100% 4/4 [00:22<00:00, 5.66s/it]\n",
|
777 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.79s/it]\n",
|
778 |
+
" all 60 60 0.638 0.969 0.783 0.552\n",
|
779 |
+
"\n",
|
780 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
781 |
+
" 100/699 0G 0.03054 0.01104 0.02552 28 320: 100% 4/4 [00:22<00:00, 5.66s/it]\n",
|
782 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.15s/it]\n",
|
783 |
+
" all 60 60 0.574 0.983 0.795 0.525\n",
|
784 |
+
"\n",
|
785 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
786 |
+
" 101/699 0G 0.03317 0.008246 0.02154 22 320: 100% 4/4 [00:24<00:00, 6.07s/it]\n",
|
787 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.80s/it]\n",
|
788 |
+
" all 60 60 0.642 0.956 0.779 0.529\n",
|
789 |
+
"\n",
|
790 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
791 |
+
" 102/699 0G 0.03023 0.01114 0.02024 32 320: 100% 4/4 [00:24<00:00, 6.21s/it]\n",
|
792 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.85s/it]\n",
|
793 |
+
" all 60 60 0.643 0.967 0.792 0.549\n",
|
794 |
+
"\n",
|
795 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
796 |
+
" 103/699 0G 0.02919 0.01021 0.02096 29 320: 100% 4/4 [00:22<00:00, 5.66s/it]\n",
|
797 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.83s/it]\n",
|
798 |
+
" all 60 60 0.645 0.961 0.777 0.528\n",
|
799 |
+
"\n",
|
800 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
801 |
+
" 104/699 0G 0.03228 0.01075 0.02334 25 320: 100% 4/4 [00:22<00:00, 5.63s/it]\n",
|
802 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.57s/it]\n",
|
803 |
+
" all 60 60 0.59 0.885 0.753 0.482\n",
|
804 |
+
"\n",
|
805 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
806 |
+
" 105/699 0G 0.02729 0.01029 0.02099 29 320: 100% 4/4 [00:23<00:00, 5.85s/it]\n",
|
807 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.83s/it]\n",
|
808 |
+
" all 60 60 0.573 0.887 0.755 0.503\n",
|
809 |
+
"\n",
|
810 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
811 |
+
" 106/699 0G 0.02997 0.01115 0.02439 26 320: 100% 4/4 [00:24<00:00, 6.20s/it]\n",
|
812 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.75s/it]\n",
|
813 |
+
" all 60 60 0.54 0.904 0.754 0.531\n",
|
814 |
+
"\n",
|
815 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
816 |
+
" 107/699 0G 0.02859 0.009621 0.02264 21 320: 100% 4/4 [00:24<00:00, 6.04s/it]\n",
|
817 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.16s/it]\n",
|
818 |
+
" all 60 60 0.519 0.858 0.752 0.519\n",
|
819 |
+
"\n",
|
820 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
821 |
+
" 108/699 0G 0.0273 0.009638 0.02336 24 320: 100% 4/4 [00:22<00:00, 5.62s/it]\n",
|
822 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:08<00:00, 4.03s/it]\n",
|
823 |
+
" all 60 60 0.508 0.838 0.743 0.455\n",
|
824 |
+
"\n",
|
825 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
826 |
+
" 109/699 0G 0.03021 0.01023 0.0197 26 320: 100% 4/4 [00:22<00:00, 5.66s/it]\n",
|
827 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:07<00:00, 3.51s/it]\n",
|
828 |
+
" all 60 60 0.512 0.74 0.735 0.506\n",
|
829 |
+
"\n",
|
830 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
831 |
+
" 110/699 0G 0.02915 0.01089 0.02271 29 320: 100% 4/4 [00:23<00:00, 5.87s/it]\n",
|
832 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.79s/it]\n",
|
833 |
+
" all 60 60 0.504 0.79 0.745 0.49\n",
|
834 |
+
"\n",
|
835 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
836 |
+
" 111/699 0G 0.02836 0.01115 0.02252 31 320: 100% 4/4 [00:25<00:00, 6.30s/it]\n",
|
837 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:05<00:00, 2.74s/it]\n",
|
838 |
+
" all 60 60 0.546 0.824 0.754 0.501\n",
|
839 |
+
"\n",
|
840 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
841 |
+
" 112/699 0G 0.02872 0.009921 0.02214 29 320: 100% 4/4 [00:23<00:00, 5.96s/it]\n",
|
842 |
+
" Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:06<00:00, 3.40s/it]\n",
|
843 |
+
" all 60 60 0.572 0.84 0.759 0.461\n",
|
844 |
+
"\n",
|
845 |
+
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
|
846 |
+
" 113/699 0G 0.0324 0.01026 0.02254 30 320: 75% 3/4 [00:19<00:06, 6.30s/it]"
|
847 |
+
]
|
848 |
+
}
|
849 |
+
],
|
850 |
+
"source": [
|
851 |
+
"!python train.py --img 320 --batch 16 --epochs 700 --data /content/yolov5/Engagement_level-1/data.yaml --weights yolov5s.pt --cache"
|
852 |
+
]
|
853 |
+
}
|
854 |
+
],
|
855 |
+
"metadata": {
|
856 |
+
"accelerator": "GPU",
|
857 |
+
"colab": {
|
858 |
+
"provenance": []
|
859 |
+
},
|
860 |
+
"kernelspec": {
|
861 |
+
"display_name": "Python 3",
|
862 |
+
"name": "python3"
|
863 |
+
},
|
864 |
+
"language_info": {
|
865 |
+
"name": "python"
|
866 |
+
}
|
867 |
+
},
|
868 |
+
"nbformat": 4,
|
869 |
+
"nbformat_minor": 0
|
870 |
+
}
|