Spaces:
Configuration error
Configuration error
use thread pool in tools
Browse files- tools/extract_embedding.py +30 -47
- tools/extract_speech_token.py +31 -23
tools/extract_embedding.py
CHANGED
|
@@ -13,74 +13,39 @@
|
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
import argparse
|
| 16 |
-
import
|
| 17 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 18 |
-
|
| 19 |
import onnxruntime
|
| 20 |
import torch
|
| 21 |
import torchaudio
|
| 22 |
import torchaudio.compliance.kaldi as kaldi
|
| 23 |
from tqdm import tqdm
|
| 24 |
-
from itertools import repeat
|
| 25 |
|
| 26 |
|
| 27 |
-
def
|
| 28 |
-
audio, sample_rate = torchaudio.load(
|
| 29 |
if sample_rate != 16000:
|
| 30 |
-
audio = torchaudio.transforms.Resample(
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
| 34 |
feat = feat - feat.mean(dim=0, keepdim=True)
|
| 35 |
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
| 36 |
-
return
|
| 37 |
|
| 38 |
|
| 39 |
def main(args):
|
| 40 |
-
|
| 41 |
-
with open("{}/wav.scp".format(args.dir)) as f:
|
| 42 |
-
for l in f:
|
| 43 |
-
l = l.replace("\n", "").split()
|
| 44 |
-
utt2wav[l[0]] = l[1]
|
| 45 |
-
with open("{}/utt2spk".format(args.dir)) as f:
|
| 46 |
-
for l in f:
|
| 47 |
-
l = l.replace("\n", "").split()
|
| 48 |
-
utt2spk[l[0]] = l[1]
|
| 49 |
-
|
| 50 |
-
assert os.path.exists(args.onnx_path), "onnx_path not exists"
|
| 51 |
-
|
| 52 |
-
option = onnxruntime.SessionOptions()
|
| 53 |
-
option.graph_optimization_level = (
|
| 54 |
-
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 55 |
-
)
|
| 56 |
-
option.intra_op_num_threads = 1
|
| 57 |
-
providers = ["CPUExecutionProvider"]
|
| 58 |
-
ort_session = onnxruntime.InferenceSession(
|
| 59 |
-
args.onnx_path, sess_options=option, providers=providers
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
all_utt = utt2wav.keys()
|
| 63 |
-
|
| 64 |
-
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
| 65 |
-
results = list(
|
| 66 |
-
tqdm(
|
| 67 |
-
executor.map(extract_embedding, all_utt, [utt2wav[utt] for utt in all_utt], repeat(ort_session)),
|
| 68 |
-
total=len(utt2wav),
|
| 69 |
-
desc="Process data: "
|
| 70 |
-
)
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
utt2embedding, spk2embedding = {}, {}
|
| 74 |
-
for
|
|
|
|
| 75 |
utt2embedding[utt] = embedding
|
| 76 |
spk = utt2spk[utt]
|
| 77 |
if spk not in spk2embedding:
|
| 78 |
spk2embedding[spk] = []
|
| 79 |
spk2embedding[spk].append(embedding)
|
| 80 |
-
|
| 81 |
for k, v in spk2embedding.items():
|
| 82 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
| 83 |
-
|
| 84 |
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
| 85 |
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
| 86 |
|
|
@@ -91,4 +56,22 @@ if __name__ == "__main__":
|
|
| 91 |
parser.add_argument("--onnx_path", type=str)
|
| 92 |
parser.add_argument("--num_thread", type=int, default=8)
|
| 93 |
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
main(args)
|
|
|
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
import argparse
|
| 16 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
|
|
|
| 17 |
import onnxruntime
|
| 18 |
import torch
|
| 19 |
import torchaudio
|
| 20 |
import torchaudio.compliance.kaldi as kaldi
|
| 21 |
from tqdm import tqdm
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
+
def single_job(utt):
|
| 25 |
+
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
| 26 |
if sample_rate != 16000:
|
| 27 |
+
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
| 28 |
+
feat = kaldi.fbank(audio,
|
| 29 |
+
num_mel_bins=80,
|
| 30 |
+
dither=0,
|
| 31 |
+
sample_frequency=16000)
|
| 32 |
feat = feat - feat.mean(dim=0, keepdim=True)
|
| 33 |
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
| 34 |
+
return utt, embedding
|
| 35 |
|
| 36 |
|
| 37 |
def main(args):
|
| 38 |
+
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
utt2embedding, spk2embedding = {}, {}
|
| 40 |
+
for future in tqdm(as_completed(all_task)):
|
| 41 |
+
utt, embedding = future.result()
|
| 42 |
utt2embedding[utt] = embedding
|
| 43 |
spk = utt2spk[utt]
|
| 44 |
if spk not in spk2embedding:
|
| 45 |
spk2embedding[spk] = []
|
| 46 |
spk2embedding[spk].append(embedding)
|
|
|
|
| 47 |
for k, v in spk2embedding.items():
|
| 48 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
|
|
|
| 49 |
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
| 50 |
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
| 51 |
|
|
|
|
| 56 |
parser.add_argument("--onnx_path", type=str)
|
| 57 |
parser.add_argument("--num_thread", type=int, default=8)
|
| 58 |
args = parser.parse_args()
|
| 59 |
+
|
| 60 |
+
utt2wav, utt2spk = {}, {}
|
| 61 |
+
with open('{}/wav.scp'.format(args.dir)) as f:
|
| 62 |
+
for l in f:
|
| 63 |
+
l = l.replace('\n', '').split()
|
| 64 |
+
utt2wav[l[0]] = l[1]
|
| 65 |
+
with open('{}/utt2spk'.format(args.dir)) as f:
|
| 66 |
+
for l in f:
|
| 67 |
+
l = l.replace('\n', '').split()
|
| 68 |
+
utt2spk[l[0]] = l[1]
|
| 69 |
+
|
| 70 |
+
option = onnxruntime.SessionOptions()
|
| 71 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 72 |
+
option.intra_op_num_threads = 1
|
| 73 |
+
providers = ["CPUExecutionProvider"]
|
| 74 |
+
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
| 75 |
+
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
| 76 |
+
|
| 77 |
main(args)
|
tools/extract_speech_token.py
CHANGED
|
@@ -13,6 +13,7 @@
|
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
import argparse
|
|
|
|
| 16 |
import logging
|
| 17 |
import torch
|
| 18 |
from tqdm import tqdm
|
|
@@ -22,7 +23,36 @@ import torchaudio
|
|
| 22 |
import whisper
|
| 23 |
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def main(args):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
utt2wav = {}
|
| 27 |
with open('{}/wav.scp'.format(args.dir)) as f:
|
| 28 |
for l in f:
|
|
@@ -34,28 +64,6 @@ def main(args):
|
|
| 34 |
option.intra_op_num_threads = 1
|
| 35 |
providers = ["CUDAExecutionProvider"]
|
| 36 |
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
|
|
|
| 37 |
|
| 38 |
-
utt2speech_token = {}
|
| 39 |
-
for utt in tqdm(utt2wav.keys()):
|
| 40 |
-
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
| 41 |
-
if sample_rate != 16000:
|
| 42 |
-
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
| 43 |
-
if audio.shape[1] / 16000 > 30:
|
| 44 |
-
logging.warning('do not support extract speech token for audio longer than 30s')
|
| 45 |
-
speech_token = []
|
| 46 |
-
else:
|
| 47 |
-
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
| 48 |
-
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
| 49 |
-
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
| 50 |
-
utt2speech_token[utt] = speech_token
|
| 51 |
-
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
if __name__ == "__main__":
|
| 55 |
-
parser = argparse.ArgumentParser()
|
| 56 |
-
parser.add_argument('--dir',
|
| 57 |
-
type=str)
|
| 58 |
-
parser.add_argument('--onnx_path',
|
| 59 |
-
type=str)
|
| 60 |
-
args = parser.parse_args()
|
| 61 |
main(args)
|
|
|
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
import argparse
|
| 16 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 17 |
import logging
|
| 18 |
import torch
|
| 19 |
from tqdm import tqdm
|
|
|
|
| 23 |
import whisper
|
| 24 |
|
| 25 |
|
| 26 |
+
def single_job(utt):
|
| 27 |
+
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
| 28 |
+
if sample_rate != 16000:
|
| 29 |
+
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
| 30 |
+
if audio.shape[1] / 16000 > 30:
|
| 31 |
+
logging.warning('do not support extract speech token for audio longer than 30s')
|
| 32 |
+
speech_token = []
|
| 33 |
+
else:
|
| 34 |
+
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
| 35 |
+
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
| 36 |
+
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
| 37 |
+
return utt, speech_token
|
| 38 |
+
|
| 39 |
+
|
| 40 |
def main(args):
|
| 41 |
+
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
| 42 |
+
utt2speech_token = {}
|
| 43 |
+
for future in tqdm(as_completed(all_task)):
|
| 44 |
+
utt, speech_token = future.result()
|
| 45 |
+
utt2speech_token[utt] = speech_token
|
| 46 |
+
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
parser = argparse.ArgumentParser()
|
| 51 |
+
parser.add_argument("--dir", type=str)
|
| 52 |
+
parser.add_argument("--onnx_path", type=str)
|
| 53 |
+
parser.add_argument("--num_thread", type=int, default=8)
|
| 54 |
+
args = parser.parse_args()
|
| 55 |
+
|
| 56 |
utt2wav = {}
|
| 57 |
with open('{}/wav.scp'.format(args.dir)) as f:
|
| 58 |
for l in f:
|
|
|
|
| 64 |
option.intra_op_num_threads = 1
|
| 65 |
providers = ["CUDAExecutionProvider"]
|
| 66 |
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
| 67 |
+
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
main(args)
|