Spaces:
Running
on
Zero
Running
on
Zero
Merge pull request #356 from MiXaiLL76/main
Browse filesImplemented fast processing of extract_embedding
- tools/extract_embedding.py +48 -24
tools/extract_embedding.py
CHANGED
@@ -13,58 +13,82 @@
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
import argparse
|
|
|
|
|
|
|
|
|
16 |
import torch
|
17 |
import torchaudio
|
18 |
-
from tqdm import tqdm
|
19 |
-
import onnxruntime
|
20 |
import torchaudio.compliance.kaldi as kaldi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
def main(args):
|
24 |
utt2wav, utt2spk = {}, {}
|
25 |
-
with open(
|
26 |
for l in f:
|
27 |
-
l = l.replace(
|
28 |
utt2wav[l[0]] = l[1]
|
29 |
-
with open(
|
30 |
for l in f:
|
31 |
-
l = l.replace(
|
32 |
utt2spk[l[0]] = l[1]
|
33 |
|
|
|
|
|
34 |
option = onnxruntime.SessionOptions()
|
35 |
-
option.graph_optimization_level =
|
|
|
|
|
36 |
option.intra_op_num_threads = 1
|
37 |
providers = ["CPUExecutionProvider"]
|
38 |
-
ort_session = onnxruntime.InferenceSession(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
utt2embedding, spk2embedding = {}, {}
|
41 |
-
for utt in
|
42 |
-
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
43 |
-
if sample_rate != 16000:
|
44 |
-
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
45 |
-
feat = kaldi.fbank(audio,
|
46 |
-
num_mel_bins=80,
|
47 |
-
dither=0,
|
48 |
-
sample_frequency=16000)
|
49 |
-
feat = feat - feat.mean(dim=0, keepdim=True)
|
50 |
-
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
51 |
utt2embedding[utt] = embedding
|
52 |
spk = utt2spk[utt]
|
53 |
if spk not in spk2embedding:
|
54 |
spk2embedding[spk] = []
|
55 |
spk2embedding[spk].append(embedding)
|
|
|
56 |
for k, v in spk2embedding.items():
|
57 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
58 |
|
59 |
-
torch.save(utt2embedding,
|
60 |
-
torch.save(spk2embedding,
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
parser = argparse.ArgumentParser()
|
65 |
-
parser.add_argument(
|
66 |
-
|
67 |
-
parser.add_argument(
|
68 |
-
type=str)
|
69 |
args = parser.parse_args()
|
70 |
main(args)
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
import argparse
|
16 |
+
import os
|
17 |
+
from concurrent.futures import ThreadPoolExecutor
|
18 |
+
|
19 |
+
import onnxruntime
|
20 |
import torch
|
21 |
import torchaudio
|
|
|
|
|
22 |
import torchaudio.compliance.kaldi as kaldi
|
23 |
+
from tqdm import tqdm
|
24 |
+
from itertools import repeat
|
25 |
+
|
26 |
+
|
27 |
+
def extract_embedding(utt: str, wav_file: str, ort_session: onnxruntime.InferenceSession):
|
28 |
+
audio, sample_rate = torchaudio.load(wav_file)
|
29 |
+
if sample_rate != 16000:
|
30 |
+
audio = torchaudio.transforms.Resample(
|
31 |
+
orig_freq=sample_rate, new_freq=16000
|
32 |
+
)(audio)
|
33 |
+
feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
|
34 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
35 |
+
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
36 |
+
return (utt, embedding)
|
37 |
|
38 |
|
39 |
def main(args):
|
40 |
utt2wav, utt2spk = {}, {}
|
41 |
+
with open("{}/wav.scp".format(args.dir)) as f:
|
42 |
for l in f:
|
43 |
+
l = l.replace("\n", "").split()
|
44 |
utt2wav[l[0]] = l[1]
|
45 |
+
with open("{}/utt2spk".format(args.dir)) as f:
|
46 |
for l in f:
|
47 |
+
l = l.replace("\n", "").split()
|
48 |
utt2spk[l[0]] = l[1]
|
49 |
|
50 |
+
assert os.path.exists(args.onnx_path), "onnx_path not exists"
|
51 |
+
|
52 |
option = onnxruntime.SessionOptions()
|
53 |
+
option.graph_optimization_level = (
|
54 |
+
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
55 |
+
)
|
56 |
option.intra_op_num_threads = 1
|
57 |
providers = ["CPUExecutionProvider"]
|
58 |
+
ort_session = onnxruntime.InferenceSession(
|
59 |
+
args.onnx_path, sess_options=option, providers=providers
|
60 |
+
)
|
61 |
+
|
62 |
+
all_utt = utt2wav.keys()
|
63 |
+
|
64 |
+
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
65 |
+
results = list(
|
66 |
+
tqdm(
|
67 |
+
executor.map(extract_embedding, all_utt, [utt2wav[utt] for utt in all_utt], repeat(ort_session)),
|
68 |
+
total=len(utt2wav),
|
69 |
+
desc="Process data: "
|
70 |
+
)
|
71 |
+
)
|
72 |
|
73 |
utt2embedding, spk2embedding = {}, {}
|
74 |
+
for utt, embedding in results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
utt2embedding[utt] = embedding
|
76 |
spk = utt2spk[utt]
|
77 |
if spk not in spk2embedding:
|
78 |
spk2embedding[spk] = []
|
79 |
spk2embedding[spk].append(embedding)
|
80 |
+
|
81 |
for k, v in spk2embedding.items():
|
82 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
83 |
|
84 |
+
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
85 |
+
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
86 |
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
parser = argparse.ArgumentParser()
|
90 |
+
parser.add_argument("--dir", type=str)
|
91 |
+
parser.add_argument("--onnx_path", type=str)
|
92 |
+
parser.add_argument("--num_thread", type=int, default=8)
|
|
|
93 |
args = parser.parse_args()
|
94 |
main(args)
|