CosyVoice / tools /extract_embedding.py
MiXaiLL76's picture
Implementing concurrent.futures
73271d4
raw
history blame
3.45 kB
#!/usr/bin/env python3
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from concurrent.futures import ThreadPoolExecutor
import onnxruntime
import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
from tqdm import tqdm
def extract_embedding(input_list):
utt, wav_file, ort_session = input_list
audio, sample_rate = torchaudio.load(wav_file)
if sample_rate != 16000:
audio = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=16000
)(audio)
feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True)
embedding = (
ort_session.run(
None,
{
ort_session.get_inputs()[0]
.name: feat.unsqueeze(dim=0)
.cpu()
.numpy()
},
)[0]
.flatten()
.tolist()
)
return (utt, embedding)
def main(args):
utt2wav, utt2spk = {}, {}
with open("{}/wav.scp".format(args.dir)) as f:
for l in f:
l = l.replace("\n", "").split()
utt2wav[l[0]] = l[1]
with open("{}/utt2spk".format(args.dir)) as f:
for l in f:
l = l.replace("\n", "").split()
utt2spk[l[0]] = l[1]
assert os.path.exists(args.onnx_path), "onnx_path not exists"
option = onnxruntime.SessionOptions()
option.graph_optimization_level = (
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
)
option.intra_op_num_threads = 1
providers = ["CPUExecutionProvider"]
ort_session = onnxruntime.InferenceSession(
args.onnx_path, sess_options=option, providers=providers
)
inputs = [
(utt, utt2wav[utt], ort_session)
for utt in tqdm(utt2wav.keys(), desc="Load data")
]
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
results = list(
tqdm(
executor.map(extract_embedding, inputs),
total=len(inputs),
desc="Process data: ",
)
)
utt2embedding, spk2embedding = {}, {}
for utt, embedding in results:
utt2embedding[utt] = embedding
spk = utt2spk[utt]
if spk not in spk2embedding:
spk2embedding[spk] = []
spk2embedding[spk].append(embedding)
for k, v in spk2embedding.items():
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dir", type=str)
parser.add_argument("--onnx_path", type=str)
parser.add_argument("--num_thread", type=int, default=8)
args = parser.parse_args()
main(args)