File size: 3,448 Bytes
076829a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73271d4
 
 
 
076829a
 
 
73271d4
7b3e285
 
73271d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
076829a
 
 
 
7b3e285
076829a
7b3e285
076829a
7b3e285
076829a
7b3e285
076829a
 
73271d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b3e285
73271d4
 
 
 
 
 
 
 
076829a
 
73271d4
 
 
 
 
 
7b3e285
6a3e442
793a248
076829a
7b3e285
 
076829a
90433f5
076829a
 
7b3e285
 
 
076829a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/env python3
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from concurrent.futures import ThreadPoolExecutor

import onnxruntime
import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
from tqdm import tqdm


def extract_embedding(input_list):
    utt, wav_file, ort_session = input_list

    audio, sample_rate = torchaudio.load(wav_file)
    if sample_rate != 16000:
        audio = torchaudio.transforms.Resample(
            orig_freq=sample_rate, new_freq=16000
        )(audio)
    feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
    feat = feat - feat.mean(dim=0, keepdim=True)
    embedding = (
        ort_session.run(
            None,
            {
                ort_session.get_inputs()[0]
                .name: feat.unsqueeze(dim=0)
                .cpu()
                .numpy()
            },
        )[0]
        .flatten()
        .tolist()
    )
    return (utt, embedding)


def main(args):
    utt2wav, utt2spk = {}, {}
    with open("{}/wav.scp".format(args.dir)) as f:
        for l in f:
            l = l.replace("\n", "").split()
            utt2wav[l[0]] = l[1]
    with open("{}/utt2spk".format(args.dir)) as f:
        for l in f:
            l = l.replace("\n", "").split()
            utt2spk[l[0]] = l[1]

    assert os.path.exists(args.onnx_path), "onnx_path not exists"

    option = onnxruntime.SessionOptions()
    option.graph_optimization_level = (
        onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
    )
    option.intra_op_num_threads = 1
    providers = ["CPUExecutionProvider"]
    ort_session = onnxruntime.InferenceSession(
        args.onnx_path, sess_options=option, providers=providers
    )

    inputs = [
        (utt, utt2wav[utt], ort_session)
        for utt in tqdm(utt2wav.keys(), desc="Load data")
    ]
    with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
        results = list(
            tqdm(
                executor.map(extract_embedding, inputs),
                total=len(inputs),
                desc="Process data: ",
            )
        )

    utt2embedding, spk2embedding = {}, {}
    for utt, embedding in results:
        utt2embedding[utt] = embedding
        spk = utt2spk[utt]
        if spk not in spk2embedding:
            spk2embedding[spk] = []
        spk2embedding[spk].append(embedding)

    for k, v in spk2embedding.items():
        spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()

    torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
    torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--dir", type=str)
    parser.add_argument("--onnx_path", type=str)
    parser.add_argument("--num_thread", type=int, default=8)
    args = parser.parse_args()
    main(args)