Spaces:
Running
on
Zero
Running
on
Zero
add threading
Browse files- tools/extract_embedding.py +94 -30
tools/extract_embedding.py
CHANGED
@@ -18,53 +18,117 @@ import torchaudio
|
|
18 |
from tqdm import tqdm
|
19 |
import onnxruntime
|
20 |
import torchaudio.compliance.kaldi as kaldi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
def main(args):
|
24 |
utt2wav, utt2spk = {}, {}
|
25 |
-
with open(
|
26 |
for l in f:
|
27 |
-
l = l.replace(
|
28 |
utt2wav[l[0]] = l[1]
|
29 |
-
with open(
|
30 |
for l in f:
|
31 |
-
l = l.replace(
|
32 |
utt2spk[l[0]] = l[1]
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
utt2embedding, spk2embedding = {}, {}
|
41 |
-
for utt in tqdm(utt2wav.keys()):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
for k, v in spk2embedding.items():
|
57 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
58 |
|
59 |
-
torch.save(utt2embedding,
|
60 |
-
torch.save(spk2embedding,
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
parser = argparse.ArgumentParser()
|
65 |
-
parser.add_argument(
|
66 |
-
|
67 |
-
parser.add_argument(
|
68 |
-
type=str)
|
69 |
args = parser.parse_args()
|
70 |
main(args)
|
|
|
18 |
from tqdm import tqdm
|
19 |
import onnxruntime
|
20 |
import torchaudio.compliance.kaldi as kaldi
|
21 |
+
from queue import Queue, Empty
|
22 |
+
from threading import Thread
|
23 |
+
|
24 |
+
|
25 |
+
class ExtractEmbedding:
|
26 |
+
def __init__(self, model_path: str, queue: Queue, out_queue: Queue):
|
27 |
+
self.model_path = model_path
|
28 |
+
self.queue = queue
|
29 |
+
self.out_queue = out_queue
|
30 |
+
self.is_run = True
|
31 |
+
|
32 |
+
def run(self):
|
33 |
+
self.consumer_thread = Thread(target=self.consumer)
|
34 |
+
self.consumer_thread.start()
|
35 |
+
|
36 |
+
def stop(self):
|
37 |
+
self.is_run = False
|
38 |
+
self.consumer_thread.join()
|
39 |
+
|
40 |
+
def consumer(self):
|
41 |
+
option = onnxruntime.SessionOptions()
|
42 |
+
option.graph_optimization_level = (
|
43 |
+
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
44 |
+
)
|
45 |
+
option.intra_op_num_threads = 1
|
46 |
+
providers = ["CPUExecutionProvider"]
|
47 |
+
ort_session = onnxruntime.InferenceSession(
|
48 |
+
self.model_path, sess_options=option, providers=providers
|
49 |
+
)
|
50 |
+
|
51 |
+
while self.is_run:
|
52 |
+
try:
|
53 |
+
utt, wav_file = self.queue.get(timeout=1)
|
54 |
+
|
55 |
+
audio, sample_rate = torchaudio.load(wav_file)
|
56 |
+
if sample_rate != 16000:
|
57 |
+
audio = torchaudio.transforms.Resample(
|
58 |
+
orig_freq=sample_rate, new_freq=16000
|
59 |
+
)(audio)
|
60 |
+
feat = kaldi.fbank(
|
61 |
+
audio, num_mel_bins=80, dither=0, sample_frequency=16000
|
62 |
+
)
|
63 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
64 |
+
embedding = (
|
65 |
+
ort_session.run(
|
66 |
+
None,
|
67 |
+
{
|
68 |
+
ort_session.get_inputs()[0]
|
69 |
+
.name: feat.unsqueeze(dim=0)
|
70 |
+
.cpu()
|
71 |
+
.numpy()
|
72 |
+
},
|
73 |
+
)[0]
|
74 |
+
.flatten()
|
75 |
+
.tolist()
|
76 |
+
)
|
77 |
+
self.out_queue.put((utt, embedding))
|
78 |
+
except Empty:
|
79 |
+
self.is_run = False
|
80 |
+
break
|
81 |
|
82 |
|
83 |
def main(args):
|
84 |
utt2wav, utt2spk = {}, {}
|
85 |
+
with open("{}/wav.scp".format(args.dir)) as f:
|
86 |
for l in f:
|
87 |
+
l = l.replace("\n", "").split()
|
88 |
utt2wav[l[0]] = l[1]
|
89 |
+
with open("{}/utt2spk".format(args.dir)) as f:
|
90 |
for l in f:
|
91 |
+
l = l.replace("\n", "").split()
|
92 |
utt2spk[l[0]] = l[1]
|
93 |
|
94 |
+
input_queue = Queue()
|
95 |
+
output_queue = Queue()
|
96 |
+
consumers = [
|
97 |
+
ExtractEmbedding(args.onnx_path, input_queue, output_queue)
|
98 |
+
for _ in range(args.num_thread)
|
99 |
+
]
|
100 |
|
101 |
utt2embedding, spk2embedding = {}, {}
|
102 |
+
for utt in tqdm(utt2wav.keys(), desc="Load data"):
|
103 |
+
input_queue.put((utt, utt2wav[utt]))
|
104 |
+
|
105 |
+
for c in consumers:
|
106 |
+
c.run()
|
107 |
+
|
108 |
+
with tqdm(desc="Process data: ", total=len(utt2wav)) as pbar:
|
109 |
+
while any([c.is_run for c in consumers]):
|
110 |
+
try:
|
111 |
+
utt, embedding = output_queue.get(timeout=1)
|
112 |
+
utt2embedding[utt] = embedding
|
113 |
+
spk = utt2spk[utt]
|
114 |
+
if spk not in spk2embedding:
|
115 |
+
spk2embedding[spk] = []
|
116 |
+
spk2embedding[spk].append(embedding)
|
117 |
+
pbar.update(1)
|
118 |
+
except Empty:
|
119 |
+
continue
|
120 |
+
|
121 |
for k, v in spk2embedding.items():
|
122 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
123 |
|
124 |
+
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
125 |
+
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
126 |
|
127 |
|
128 |
if __name__ == "__main__":
|
129 |
parser = argparse.ArgumentParser()
|
130 |
+
parser.add_argument("--dir", type=str)
|
131 |
+
parser.add_argument("--onnx_path", type=str)
|
132 |
+
parser.add_argument("--num_thread", type=int, default=8)
|
|
|
133 |
args = parser.parse_args()
|
134 |
main(args)
|