Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,343 Bytes
076829a a13411c 02f941d f4e70e2 a13411c 076829a f4e70e2 02f941d f4e70e2 076829a 9ab298d 076829a 9ab298d f4e70e2 02f941d a13411c 9ab298d a13411c f4e70e2 02f941d f4e70e2 02f941d f4e70e2 02f941d f4e70e2 02f941d f4e70e2 02f941d f4e70e2 02f941d f4e70e2 a13411c f4e70e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
import threading
import time
from contextlib import nullcontext
import uuid
from cosyvoice.utils.common import fade_in_out
class CosyVoiceModel:
def __init__(self,
llm: torch.nn.Module,
flow: torch.nn.Module,
hift: torch.nn.Module):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.llm = llm
self.flow = flow
self.hift = hift
self.token_min_hop_len = 100
self.token_max_hop_len = 400
self.token_overlap_len = 20
self.speech_overlap_len = 34 * 256
self.window = np.hamming(2 * self.speech_overlap_len)
self.stream_scale_factor = 1
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.lock = threading.Lock()
# dict used to store session related variable
self.tts_speech_token = {}
self.llm_end = {}
def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
self.llm.to(self.device).eval()
self.llm.half()
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
self.flow.to(self.device).eval()
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
self.hift.to(self.device).eval()
def load_script(self, llm_text_encoder_model, llm_llm_model):
llm_text_encoder = torch.jit.load(llm_text_encoder_model)
self.llm.text_encoder = llm_text_encoder
llm_llm = torch.jit.load(llm_llm_model)
self.llm.llm = llm_llm
def llm_job(self, text, text_len, prompt_text, prompt_text_len, llm_prompt_speech_token, llm_prompt_speech_token_len, llm_embedding, this_uuid):
with self.llm_context:
for i in self.llm.inference(text=text.to(self.device),
text_len=text_len.to(self.device),
prompt_text=prompt_text.to(self.device),
prompt_text_len=prompt_text_len.to(self.device),
prompt_speech_token=llm_prompt_speech_token.to(self.device),
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
embedding=llm_embedding.to(self.device).half(),
sampling=25,
max_token_text_ratio=30,
min_token_text_ratio=3):
self.tts_speech_token[this_uuid].append(i)
self.llm_end[this_uuid] = True
def token2wav(self, token, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, embedding):
with self.flow_hift_context:
tts_mel = self.flow.inference(token=token.to(self.device),
token_len=torch.tensor([token.size(1)], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=prompt_token_len.to(self.device),
prompt_feat=prompt_feat.to(self.device),
prompt_feat_len=prompt_feat_len.to(self.device),
embedding=embedding.to(self.device))
tts_speech = self.hift.inference(mel=tts_mel).cpu()
return tts_speech
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
# this_uuid is used to track variables related to this inference thread
this_uuid = str(uuid.uuid1())
with self.lock:
self.tts_speech_token[this_uuid], self.llm_end[this_uuid] = [], False
p = threading.Thread(target=self.llm_job, args=(text.to(self.device), text_len.to(self.device), prompt_text.to(self.device), prompt_text_len.to(self.device),
llm_prompt_speech_token.to(self.device), llm_prompt_speech_token_len.to(self.device), llm_embedding.to(self.device), this_uuid))
p.start()
if stream is True:
cache_speech, cache_token, token_hop_len = None, None, self.token_min_hop_len
while True:
time.sleep(0.1)
if len(self.tts_speech_token[this_uuid]) >= token_hop_len + self.token_overlap_len:
this_tts_speech_token = torch.concat(self.tts_speech_token[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
with self.flow_hift_context:
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token.to(self.device),
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
prompt_feat=prompt_speech_feat.to(self.device),
prompt_feat_len=prompt_speech_feat_len.to(self.device),
embedding=flow_embedding.to(self.device))
# fade in/out if necessary
if cache_speech is not None:
this_tts_speech = fade_in_out(this_tts_speech, cache_speech, self.window)
yield {'tts_speech': this_tts_speech[:, :-self.speech_overlap_len]}
cache_speech = this_tts_speech[:, -self.speech_overlap_len:]
cache_token = self.tts_speech_token[this_uuid][:token_hop_len]
with self.lock:
self.tts_speech_token[this_uuid] = self.tts_speech_token[this_uuid][token_hop_len:]
# increase token_hop_len for better speech quality
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
if self.llm_end[this_uuid] is True and len(self.tts_speech_token[this_uuid]) < token_hop_len + self.token_overlap_len:
break
p.join()
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
this_tts_speech_token = torch.concat(self.tts_speech_token[this_uuid], dim=1)
if this_tts_speech_token.shape[1] < self.token_min_hop_len + self.token_overlap_len and cache_token is not None:
cache_token_len = self.token_min_hop_len + self.token_overlap_len - this_tts_speech_token.shape[1]
this_tts_speech_token = torch.concat([torch.concat(cache_token[-cache_token_len:], dim=1), this_tts_speech_token], dim=1)
else:
cache_token_len = 0
with self.flow_hift_context:
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token.to(self.device),
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
prompt_feat=prompt_speech_feat.to(self.device),
prompt_feat_len=prompt_speech_feat_len.to(self.device),
embedding=flow_embedding.to(self.device))
this_tts_speech = this_tts_speech[:, int(cache_token_len / this_tts_speech_token.shape[1] * this_tts_speech.shape[1]):]
if cache_speech is not None:
this_tts_speech = fade_in_out(this_tts_speech, cache_speech, self.window)
yield {'tts_speech': this_tts_speech}
else:
# deal with all tokens
p.join()
this_tts_speech_token = torch.concat(self.tts_speech_token[this_uuid], dim=1)
with self.flow_hift_context:
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token.to(self.device),
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
prompt_feat=prompt_speech_feat.to(self.device),
prompt_feat_len=prompt_speech_feat_len.to(self.device),
embedding=flow_embedding.to(self.device))
yield {'tts_speech': this_tts_speech}
with self.lock:
self.tts_speech_token.pop(this_uuid)
self.llm_end.pop(this_uuid)
torch.cuda.synchronize()
|