CosyVoice commited on
Commit
02f941d
·
1 Parent(s): a13411c

update model inference

Browse files
cosyvoice/cli/cosyvoice.py CHANGED
@@ -46,9 +46,9 @@ class CosyVoice:
46
  return spks
47
 
48
  def inference_sft(self, tts_text, spk_id, stream=False):
49
- start_time = time.time()
50
  for i in self.frontend.text_normalize(tts_text, split=True):
51
  model_input = self.frontend.frontend_sft(i, spk_id)
 
52
  for model_output in self.model.inference(**model_input, stream=stream):
53
  speech_len = model_output['tts_speech'].shape[1] / 22050
54
  logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
@@ -56,10 +56,10 @@ class CosyVoice:
56
  start_time = time.time()
57
 
58
  def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False):
59
- start_time = time.time()
60
  prompt_text = self.frontend.text_normalize(prompt_text, split=False)
61
  for i in self.frontend.text_normalize(tts_text, split=True):
62
  model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
 
63
  for model_output in self.model.inference(**model_input, stream=stream):
64
  speech_len = model_output['tts_speech'].shape[1] / 22050
65
  logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
@@ -69,9 +69,9 @@ class CosyVoice:
69
  def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False):
70
  if self.frontend.instruct is True:
71
  raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
72
- start_time = time.time()
73
  for i in self.frontend.text_normalize(tts_text, split=True):
74
  model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
 
75
  for model_output in self.model.inference(**model_input, stream=stream):
76
  speech_len = model_output['tts_speech'].shape[1] / 22050
77
  logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
@@ -81,10 +81,10 @@ class CosyVoice:
81
  def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False):
82
  if self.frontend.instruct is False:
83
  raise ValueError('{} do not support instruct inference'.format(self.model_dir))
84
- start_time = time.time()
85
  instruct_text = self.frontend.text_normalize(instruct_text, split=False)
86
  for i in self.frontend.text_normalize(tts_text, split=True):
87
  model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
 
88
  for model_output in self.model.inference(**model_input, stream=stream):
89
  speech_len = model_output['tts_speech'].shape[1] / 22050
90
  logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
 
46
  return spks
47
 
48
  def inference_sft(self, tts_text, spk_id, stream=False):
 
49
  for i in self.frontend.text_normalize(tts_text, split=True):
50
  model_input = self.frontend.frontend_sft(i, spk_id)
51
+ start_time = time.time()
52
  for model_output in self.model.inference(**model_input, stream=stream):
53
  speech_len = model_output['tts_speech'].shape[1] / 22050
54
  logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
 
56
  start_time = time.time()
57
 
58
  def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False):
 
59
  prompt_text = self.frontend.text_normalize(prompt_text, split=False)
60
  for i in self.frontend.text_normalize(tts_text, split=True):
61
  model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
62
+ start_time = time.time()
63
  for model_output in self.model.inference(**model_input, stream=stream):
64
  speech_len = model_output['tts_speech'].shape[1] / 22050
65
  logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
 
69
  def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False):
70
  if self.frontend.instruct is True:
71
  raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
 
72
  for i in self.frontend.text_normalize(tts_text, split=True):
73
  model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
74
+ start_time = time.time()
75
  for model_output in self.model.inference(**model_input, stream=stream):
76
  speech_len = model_output['tts_speech'].shape[1] / 22050
77
  logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
 
81
  def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False):
82
  if self.frontend.instruct is False:
83
  raise ValueError('{} do not support instruct inference'.format(self.model_dir))
 
84
  instruct_text = self.frontend.text_normalize(instruct_text, split=False)
85
  for i in self.frontend.text_normalize(tts_text, split=True):
86
  model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
87
+ start_time = time.time()
88
  for model_output in self.model.inference(**model_input, stream=stream):
89
  speech_len = model_output['tts_speech'].shape[1] / 22050
90
  logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
cosyvoice/cli/model.py CHANGED
@@ -13,6 +13,9 @@
13
  # limitations under the License.
14
  import torch
15
  import numpy as np
 
 
 
16
 
17
 
18
  class CosyVoiceModel:
@@ -25,10 +28,13 @@ class CosyVoiceModel:
25
  self.llm = llm
26
  self.flow = flow
27
  self.hift = hift
28
- self.stream_win_len = 60
29
- self.stream_hop_len = 50
30
- self.overlap = 4395 # 10 token equals 4395 sample point
31
  self.window = np.hamming(2 * self.overlap)
 
 
 
32
 
33
  def load(self, llm_model, flow_model, hift_model):
34
  self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
@@ -38,13 +44,8 @@ class CosyVoiceModel:
38
  self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
39
  self.hift.to(self.device).eval()
40
 
41
- def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
42
- prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
43
- llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
44
- flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
45
- prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
46
- if stream is True:
47
- tts_speech_token, cache_speech = [], None
48
  for i in self.llm.inference(text=text.to(self.device),
49
  text_len=text_len.to(self.device),
50
  prompt_text=prompt_text.to(self.device),
@@ -56,10 +57,56 @@ class CosyVoiceModel:
56
  sampling=25,
57
  max_token_text_ratio=30,
58
  min_token_text_ratio=3,
59
- stream=stream):
60
- tts_speech_token.append(i)
61
- if len(tts_speech_token) == self.stream_win_len:
62
- this_tts_speech_token = torch.concat(tts_speech_token, dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  this_tts_mel = self.flow.inference(token=this_tts_speech_token,
64
  token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
65
  prompt_token=flow_prompt_speech_token.to(self.device),
@@ -68,29 +115,14 @@ class CosyVoiceModel:
68
  prompt_feat_len=prompt_speech_feat_len.to(self.device),
69
  embedding=flow_embedding.to(self.device))
70
  this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
71
- # fade in/out if necessary
72
- if cache_speech is not None:
73
- this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
74
- yield {'tts_speech': this_tts_speech[:, :-self.overlap]}
75
- cache_speech = this_tts_speech[:, -self.overlap:]
76
- tts_speech_token = tts_speech_token[-(self.stream_win_len - self.stream_hop_len):]
77
- # deal with remain tokens
78
- if cache_speech is None or len(tts_speech_token) > self.stream_win_len - self.stream_hop_len:
79
- this_tts_speech_token = torch.concat(tts_speech_token, dim=1)
80
- this_tts_mel = self.flow.inference(token=this_tts_speech_token,
81
- token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
82
- prompt_token=flow_prompt_speech_token.to(self.device),
83
- prompt_token_len=flow_prompt_speech_token_len.to(self.device),
84
- prompt_feat=prompt_speech_feat.to(self.device),
85
- prompt_feat_len=prompt_speech_feat_len.to(self.device),
86
- embedding=flow_embedding.to(self.device))
87
- this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
88
  if cache_speech is not None:
89
  this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
90
  yield {'tts_speech': this_tts_speech}
91
  else:
92
- assert len(tts_speech_token) == self.stream_win_len - self.stream_hop_len, 'tts_speech_token not equal to {}'.format(self.stream_win_len - self.stream_hop_len)
93
  yield {'tts_speech': cache_speech}
 
 
94
  else:
95
  tts_speech_token = []
96
  for i in self.llm.inference(text=text.to(self.device),
 
13
  # limitations under the License.
14
  import torch
15
  import numpy as np
16
+ import threading
17
+ import time
18
+ from contextlib import nullcontext
19
 
20
 
21
  class CosyVoiceModel:
 
28
  self.llm = llm
29
  self.flow = flow
30
  self.hift = hift
31
+ self.stream_win_len = 60 * 4
32
+ self.stream_hop_len = 50 * 4
33
+ self.overlap = 4395 * 4 # 10 token equals 4395 sample point
34
  self.window = np.hamming(2 * self.overlap)
35
+ self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
36
+ self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
37
+ self.lock = threading.Lock()
38
 
39
  def load(self, llm_model, flow_model, hift_model):
40
  self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
 
44
  self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
45
  self.hift.to(self.device).eval()
46
 
47
+ def llm_job(self, text, text_len, prompt_text, prompt_text_len, llm_prompt_speech_token, llm_prompt_speech_token_len, llm_embedding):
48
+ with self.llm_context:
 
 
 
 
 
49
  for i in self.llm.inference(text=text.to(self.device),
50
  text_len=text_len.to(self.device),
51
  prompt_text=prompt_text.to(self.device),
 
57
  sampling=25,
58
  max_token_text_ratio=30,
59
  min_token_text_ratio=3,
60
+ stream=True):
61
+ self.tts_speech_token.append(i)
62
+ self.llm_end = True
63
+
64
+ def token2wav(self, token, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, embedding):
65
+ with self.flow_hift_context:
66
+ tts_mel = self.flow.inference(token=token.to(self.device),
67
+ token_len=torch.tensor([token.size(1)], dtype=torch.int32).to(self.device),
68
+ prompt_token=prompt_token.to(self.device),
69
+ prompt_token_len=prompt_token_len.to(self.device),
70
+ prompt_feat=prompt_feat.to(self.device),
71
+ prompt_feat_len=prompt_feat_len.to(self.device),
72
+ embedding=embedding.to(self.device))
73
+ tts_speech = self.hift.inference(mel=tts_mel).cpu()
74
+ return tts_speech
75
+
76
+ def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
77
+ prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
78
+ llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
79
+ flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
80
+ prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
81
+ if stream is True:
82
+ self.tts_speech_token, self.llm_end, cache_speech = [], False, None
83
+ p = threading.Thread(target=self.llm_job, args=(text.to(self.device), text_len.to(self.device), prompt_text.to(self.device), prompt_text_len.to(self.device),
84
+ llm_prompt_speech_token.to(self.device), llm_prompt_speech_token_len.to(self.device), llm_embedding.to(self.device)))
85
+ p.start()
86
+ while True:
87
+ time.sleep(0.1)
88
+ if len(self.tts_speech_token) >= self.stream_win_len:
89
+ this_tts_speech_token = torch.concat(self.tts_speech_token[:self.stream_win_len], dim=1)
90
+ with self.flow_hift_context:
91
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
92
+ prompt_token=flow_prompt_speech_token.to(self.device),
93
+ prompt_token_len=flow_prompt_speech_token_len.to(self.device),
94
+ prompt_feat=prompt_speech_feat.to(self.device),
95
+ prompt_feat_len=prompt_speech_feat_len.to(self.device),
96
+ embedding=flow_embedding.to(self.device))
97
+ # fade in/out if necessary
98
+ if cache_speech is not None:
99
+ this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
100
+ yield {'tts_speech': this_tts_speech[:, :-self.overlap]}
101
+ cache_speech = this_tts_speech[:, -self.overlap:]
102
+ with self.lock:
103
+ self.tts_speech_token = self.tts_speech_token[self.stream_hop_len:]
104
+ if self.llm_end is True:
105
+ break
106
+ # deal with remain tokens
107
+ if cache_speech is None or len(self.tts_speech_token) > self.stream_win_len - self.stream_hop_len:
108
+ this_tts_speech_token = torch.concat(self.tts_speech_token, dim=1)
109
+ with self.flow_hift_context:
110
  this_tts_mel = self.flow.inference(token=this_tts_speech_token,
111
  token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
112
  prompt_token=flow_prompt_speech_token.to(self.device),
 
115
  prompt_feat_len=prompt_speech_feat_len.to(self.device),
116
  embedding=flow_embedding.to(self.device))
117
  this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  if cache_speech is not None:
119
  this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
120
  yield {'tts_speech': this_tts_speech}
121
  else:
122
+ assert len(self.tts_speech_token) == self.stream_win_len - self.stream_hop_len, 'tts_speech_token not equal to {}'.format(self.stream_win_len - self.stream_hop_len)
123
  yield {'tts_speech': cache_speech}
124
+ p.join()
125
+ torch.cuda.synchronize()
126
  else:
127
  tts_speech_token = []
128
  for i in self.llm.inference(text=text.to(self.device),
cosyvoice/flow/length_regulator.py CHANGED
@@ -43,7 +43,7 @@ class InterpolateRegulator(nn.Module):
43
  def forward(self, x, ylens=None):
44
  # x in (B, T, D)
45
  mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
46
- x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
47
  out = self.model(x).transpose(1, 2).contiguous()
48
  olens = ylens
49
  return out * mask, olens
 
43
  def forward(self, x, ylens=None):
44
  # x in (B, T, D)
45
  mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
46
+ x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
47
  out = self.model(x).transpose(1, 2).contiguous()
48
  olens = ylens
49
  return out * mask, olens
cosyvoice/llm/llm.py CHANGED
@@ -174,7 +174,7 @@ class TransformerLM(torch.nn.Module):
174
  embedding = self.spk_embed_affine_layer(embedding)
175
  embedding = embedding.unsqueeze(dim=1)
176
  else:
177
- embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
178
 
179
  # 3. concat llm_input
180
  sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
@@ -182,7 +182,7 @@ class TransformerLM(torch.nn.Module):
182
  if prompt_speech_token_len != 0:
183
  prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
184
  else:
185
- prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
186
  lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
187
 
188
  # 4. cal min/max_length
 
174
  embedding = self.spk_embed_affine_layer(embedding)
175
  embedding = embedding.unsqueeze(dim=1)
176
  else:
177
+ embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
178
 
179
  # 3. concat llm_input
180
  sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
 
182
  if prompt_speech_token_len != 0:
183
  prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
184
  else:
185
+ prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
186
  lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
187
 
188
  # 4. cal min/max_length
webui.py CHANGED
@@ -24,14 +24,8 @@ import torchaudio
24
  import random
25
  import librosa
26
 
27
- import logging
28
- logging.getLogger('matplotlib').setLevel(logging.WARNING)
29
-
30
  from cosyvoice.cli.cosyvoice import CosyVoice
31
- from cosyvoice.utils.file_utils import load_wav, speed_change
32
-
33
- logging.basicConfig(level=logging.DEBUG,
34
- format='%(asctime)s %(levelname)s %(message)s')
35
 
36
  def generate_seed():
37
  seed = random.randint(1, 100000000)
@@ -63,10 +57,11 @@ instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成
63
  '3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
64
  '跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮',
65
  '自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮'}
 
66
  def change_instruction(mode_checkbox_group):
67
  return instruct_dict[mode_checkbox_group]
68
 
69
- def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor):
70
  if prompt_wav_upload is not None:
71
  prompt_wav = prompt_wav_upload
72
  elif prompt_wav_record is not None:
@@ -117,32 +112,25 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
117
  if mode_checkbox_group == '预训练音色':
118
  logging.info('get sft inference request')
119
  set_all_random_seed(seed)
120
- output = cosyvoice.inference_sft(tts_text, sft_dropdown)
 
121
  elif mode_checkbox_group == '3s极速复刻':
122
  logging.info('get zero_shot inference request')
123
  prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
124
  set_all_random_seed(seed)
125
- output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
 
126
  elif mode_checkbox_group == '跨语种复刻':
127
  logging.info('get cross_lingual inference request')
128
  prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
129
  set_all_random_seed(seed)
130
- output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k)
 
131
  else:
132
  logging.info('get instruct inference request')
133
  set_all_random_seed(seed)
134
- output = cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text)
135
-
136
- if speed_factor != 1.0:
137
- try:
138
- audio_data, sample_rate = speed_change(output["tts_speech"], target_sr, str(speed_factor))
139
- audio_data = audio_data.numpy().flatten()
140
- except Exception as e:
141
- print(f"Failed to change speed of audio: \n{e}")
142
- else:
143
- audio_data = output['tts_speech'].numpy().flatten()
144
-
145
- return (target_sr, audio_data)
146
 
147
  def main():
148
  with gr.Blocks() as demo:
@@ -155,6 +143,7 @@ def main():
155
  mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
156
  instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
157
  sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
 
158
  with gr.Column(scale=0.25):
159
  seed_button = gr.Button(value="\U0001F3B2")
160
  seed = gr.Number(value=0, label="随机推理种子")
@@ -167,11 +156,11 @@ def main():
167
 
168
  generate_button = gr.Button("生成音频")
169
 
170
- audio_output = gr.Audio(label="合成音频")
171
 
172
  seed_button.click(generate_seed, inputs=[], outputs=seed)
173
  generate_button.click(generate_audio,
174
- inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor],
175
  outputs=[audio_output])
176
  mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
177
  demo.queue(max_size=4, default_concurrency_limit=2)
 
24
  import random
25
  import librosa
26
 
 
 
 
27
  from cosyvoice.cli.cosyvoice import CosyVoice
28
+ from cosyvoice.utils.file_utils import load_wav, speed_change, logging
 
 
 
29
 
30
  def generate_seed():
31
  seed = random.randint(1, 100000000)
 
57
  '3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
58
  '跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮',
59
  '自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮'}
60
+ stream_mode_list = [('否', False), ('是', True)]
61
  def change_instruction(mode_checkbox_group):
62
  return instruct_dict[mode_checkbox_group]
63
 
64
+ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream, speed_factor):
65
  if prompt_wav_upload is not None:
66
  prompt_wav = prompt_wav_upload
67
  elif prompt_wav_record is not None:
 
112
  if mode_checkbox_group == '预训练音色':
113
  logging.info('get sft inference request')
114
  set_all_random_seed(seed)
115
+ for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream):
116
+ yield (target_sr, i['tts_speech'].numpy().flatten())
117
  elif mode_checkbox_group == '3s极速复刻':
118
  logging.info('get zero_shot inference request')
119
  prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
120
  set_all_random_seed(seed)
121
+ for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream):
122
+ yield (target_sr, i['tts_speech'].numpy().flatten())
123
  elif mode_checkbox_group == '跨语种复刻':
124
  logging.info('get cross_lingual inference request')
125
  prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
126
  set_all_random_seed(seed)
127
+ for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream):
128
+ yield (target_sr, i['tts_speech'].numpy().flatten())
129
  else:
130
  logging.info('get instruct inference request')
131
  set_all_random_seed(seed)
132
+ for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream):
133
+ yield (target_sr, i['tts_speech'].numpy().flatten())
 
 
 
 
 
 
 
 
 
 
134
 
135
  def main():
136
  with gr.Blocks() as demo:
 
143
  mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
144
  instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
145
  sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
146
+ stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
147
  with gr.Column(scale=0.25):
148
  seed_button = gr.Button(value="\U0001F3B2")
149
  seed = gr.Number(value=0, label="随机推理种子")
 
156
 
157
  generate_button = gr.Button("生成音频")
158
 
159
+ audio_output = gr.Audio(label="合成音频", autoplay=True, streaming=True)
160
 
161
  seed_button.click(generate_seed, inputs=[], outputs=seed)
162
  generate_button.click(generate_audio,
163
+ inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream, speed_factor],
164
  outputs=[audio_output])
165
  mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
166
  demo.queue(max_size=4, default_concurrency_limit=2)