Spaces:
Runtime error
Runtime error
import argparse | |
import datetime | |
import json | |
import logging | |
import multiprocessing | |
import os | |
import re | |
from abc import ABC, abstractmethod | |
import hjson | |
import numpy as np | |
import openai | |
from tqdm import tqdm | |
from sklearn.metrics.pairwise import cosine_similarity | |
from data_loader import load_data | |
from code_executor import PythonExecutor | |
from utils import (Agent, LLMClient, PromptTemplate, api_configs, | |
extract_and_parse_markup, setup_logging) | |
from data_utils import parse_question, parse_ground_truth | |
from evaluate import evaluate | |
logger = setup_logging() | |
class RetrievalAugmentation: | |
# TODO: implement the retrieval augmentation later | |
def __init__(self, dataset, embeddings): | |
self.dataset = dataset | |
self.embeddings = embeddings | |
def get_similar_examples(self, query_embedding, n=3): | |
similarities = cosine_similarity([query_embedding], self.embeddings)[0] | |
top_indices = similarities.argsort()[-n:][::-1] | |
return [self.dataset[i] for i in top_indices] | |
class SwiftAgent(Agent): | |
def __init__(self, prompt_template, llm_client, retrieval_augmentation=None): | |
super().__init__(prompt_template, llm_client) | |
self.retrieval_augmentation = retrieval_augmentation | |
self.plans = {} | |
self.codes = {} | |
def generate_response(self, prompt, reasoning, current_solution, plan, critical_feedback, prefill=True): | |
logger.info("SwiftAgent generating response") | |
if self.retrieval_augmentation: | |
query_embedding = self.get_query_embedding(prompt) | |
similar_examples = self.retrieval_augmentation.get_similar_examples(query_embedding) | |
examples_text = "\n".join(similar_examples) # TODO: add more context to the prompt | |
else: | |
examples_text = "No similar examples available." | |
swift_prompt = self.prompt_template.format( | |
"swift", | |
prompt=prompt, | |
current_reasoning=reasoning, # TODO: check if this is needed | |
examples=examples_text, | |
current_solution=current_solution, | |
critical_feedback=critical_feedback, | |
revised_plan=plan | |
) | |
# logger.info(f"SwiftAgent prompt:\n{swift_prompt}") | |
messages = [ | |
{"role": "system", "content": ''}, | |
{"role": "user", "content": swift_prompt} | |
] | |
if prefill: | |
messages.append({"role": "assistant", "content": "<plan>"}) # prefix-filling | |
response = self.llm_client.generate_response(messages) | |
if prefill: | |
response = "<plan>" + response | |
try: | |
parsed_response = extract_and_parse_markup(response) | |
return parsed_response | |
except json.JSONDecodeError: | |
logger.error("Error: Swift's response was not in valid JSON format. Returning raw response.") | |
return response | |
def get_query_embedding(self, query): | |
# Implement query embedding generation | |
return np.random.rand(768) # Placeholder, replace with actual embedding | |
class SageAgent(Agent): | |
def __init__(self, prompt_template, llm_client): | |
super().__init__(prompt_template, llm_client) | |
self.feedbacks = {} | |
self.plans = {} | |
def generate_response(self, prompt, reasoning, current_solution, prefill=True): | |
logger.info("SageAgent generating response") | |
sage_prompt = self.prompt_template.format( | |
"sage", | |
prompt=prompt, | |
reasoning=reasoning, | |
current_solution=current_solution | |
) | |
# logger.info(f"SageAgent prompt:\n{sage_prompt}") | |
messages = [ | |
{"role": "system", "content": ""}, | |
{"role": "user", "content": sage_prompt} | |
] | |
if prefill: | |
messages.append({"role": "assistant", "content": "<solved>"}) # prefix-filling | |
response = self.llm_client.generate_response(messages) | |
# logger.info(f"SageAgent raw response:\n{response}") | |
if prefill: | |
response = "<solved>" + response | |
try: | |
parsed_response = extract_and_parse_markup(response) | |
return parsed_response | |
except json.JSONDecodeError: | |
logger.error("Error: Sage's response was not in valid JSON format. Returning raw response.") | |
return response | |
class RewardModel: | |
def __init__(self, prompt_template, llm_client): | |
self.prompt_template = prompt_template | |
self.llm_client = llm_client | |
self.scores = [] | |
self.feedbacks = [] | |
self.stagnant_count = 0 | |
def calculate_reward(self, problem, reasoning, current_solution, prefill=True): | |
reward_prompt = self.prompt_template.format( | |
"reward", | |
problem=problem, | |
reasoning= reasoning, | |
current_solution=current_solution | |
) | |
# logger.info(f"RewardModel prompt:\n{reward_prompt}") | |
messages = [ | |
{"role": "system", "content": ""}, | |
{"role": "user", "content": reward_prompt} | |
] | |
if prefill: | |
messages.append({"role": "assistant", "content": "<feedback>"}) # prefix-filling | |
reward_response = self.llm_client.generate_response(messages) | |
if prefill: | |
reward_response = "<feedback>" + reward_response | |
try: | |
parsed_response = extract_and_parse_markup(reward_response) | |
score = int(parsed_response["score"]) | |
# Update stagnant_count based on score comparison | |
if len(self.scores) > 0 and score <= self.scores[-1]: | |
self.stagnant_count += 1 | |
else: | |
self.stagnant_count = 0 | |
return parsed_response | |
except json.JSONDecodeError: | |
logger.error("Error: Reward model's response was not in valid JSON format. Returning raw response.") | |
return reward_response | |
def should_consult_sage(self): | |
# This method remains unchanged | |
return self.stagnant_count >= 1 or (len(self.scores) > 0 and self.scores[-1] < 5) | |
class SwiftSage: | |
def __init__(self, dataset, embeddings, prompt_template_dir, swift_config, sage_config, reward_config, use_retrieval=True, start_with_sage=False): | |
prompt_template = PromptTemplate(prompt_template_dir) | |
retrieval_augmentation = RetrievalAugmentation(dataset, embeddings) if use_retrieval else None | |
# add logger to the following LLMClient | |
swift_llm = LLMClient(**swift_config, logger=logger) | |
sage_llm = LLMClient(**sage_config, logger=logger) | |
reward_llm = LLMClient(**reward_config, logger=logger) | |
self.swift = SwiftAgent(prompt_template, swift_llm, retrieval_augmentation) | |
self.sage = SageAgent(prompt_template, sage_llm) | |
self.reward_model = RewardModel(prompt_template, reward_llm) | |
self.start_with_sage = start_with_sage | |
# self.executor = PythonExecutor(get_answer_from_stdout=True) | |
def solve(self, problem, max_iterations=10, reward_threshold=8): | |
logger.info(f"Starting to solve problem: {problem}") | |
current_solution = "No current solution yet." # final answer | |
current_reasoning = "No reasoning steps yet." # reasoning steps | |
plan = "Initial plan: Take a deep breath and think step by step." | |
critical_feedback = "No critical feedback yet." # Initialize critical_feedback | |
solved = False | |
for i in range(max_iterations): | |
logger.info(f"Iteration {i+1}") | |
# Use the Sage Agent | |
if (i == 0 and self.start_with_sage) or self.reward_model.should_consult_sage(): | |
sage_parsed = self.sage.generate_response(problem, current_reasoning, current_solution) | |
critical_feedback = sage_parsed["critical_feedback"] | |
# plan = "\n - " + "\n - ".join(sage_parsed["revised_plan"]) | |
current_reasoning = sage_parsed["reasoning_steps"] | |
current_code = sage_parsed["code"] | |
solved = sage_parsed["solved"].lower() == "true" if i != 0 else sage_parsed["solved"] | |
if solved: | |
return current_reasoning, current_solution | |
logger.info(f"Sage's feedback (iteration {i+1}):\n{critical_feedback}") | |
# logger.info(f"Sage's reasoning steps:\n{current_reasoning}") | |
self.sage.feedbacks[i] = critical_feedback | |
# run the code | |
executor = PythonExecutor(get_answer_from_stdout=True) | |
code_result, code_report = executor.apply(current_code) | |
logger.info(f"Sage Code execution report: {code_report}") | |
logger.info(f"Sage Code execution result: {code_result}") | |
current_reasoning = current_reasoning + f"\n\nThe generated code is:\n\n```python\n{current_code}\n```" | |
current_solution = "Answer (from running the code):\n " + code_result | |
# current_solution = sage_parsed["final_answer"] | |
logger.info("Activated Sage, so we should return the reasoning and solution from Sage.") | |
return current_reasoning, current_solution | |
if not solved: | |
# Use the Swift Agent | |
swift_parsed = self.swift.generate_response(problem, current_reasoning, current_solution, plan, critical_feedback) | |
if "code" not in swift_parsed and "final_answer" not in swift_parsed: | |
logger.info("Swift's response does not contain the 'final_answer' or 'code' field. Returning raw response.") | |
self.reward_model.scores.append(0) | |
self.reward_model.feedbacks.append("No feedback") | |
self.reward_model.stagnant_count += max_iterations # force to use Sage Agent | |
continue | |
current_plan = swift_parsed["plan"] | |
current_code = swift_parsed["code"] | |
current_answer = swift_parsed.get("final_answer", None) | |
self.swift.plans[i] = current_plan | |
self.swift.codes[i] = current_code | |
logger.info(f"Swift's plan:\n{current_plan}") | |
logger.info(f"Swift's code:\n{current_code}") | |
# Call sandbox to run the code and get the result | |
executor = PythonExecutor(get_answer_from_stdout=True) | |
code_result, code_report = executor.apply(current_code) | |
logger.info(f"Code execution report: {code_report}") | |
logger.info(f"Code execution result: {code_result}") | |
current_reasoning = current_plan + f"\nThe generated code is:\n```python\n{current_code}\n```" | |
current_solution = "Answer (from running the code):\n " + code_result | |
# Calling the reward model to provide feedback and score | |
reward_parsed = self.reward_model.calculate_reward(problem, current_reasoning, current_solution) | |
score = int(reward_parsed["score"]) | |
feedback = reward_parsed["feedback"] | |
prev_score = self.reward_model.scores[-1] if len(self.reward_model.scores) > 0 else 0 | |
self.reward_model.scores.append(score) | |
self.reward_model.feedbacks.append(feedback) | |
# detect if the score is lower than the previous score | |
logger.info(f"Reward for iteration {i+1}: {score}/10") | |
logger.info(f"Feedback: {feedback}") | |
if False and score < prev_score: | |
logger.info("Score is lower than the previous score. Stopping the iteration. Reverting to the previous solution and reasoning.") | |
# revert to the previous solution and reasoning | |
current_solution = self.swift.codes[i-1] | |
current_reasoning = self.swift.plans[i-1] | |
continue | |
critical_feedback = feedback | |
if score >= reward_threshold or solved: | |
logger.info("Perfect solution found!") | |
return current_reasoning, current_solution | |
if self.reward_model.should_consult_sage(): | |
logger.info("Reward model: The solution quality hasn't improved recently. Consulting Sage for the next iteration.") | |
logger.info("Max iterations reached without finding a perfect solution.") | |
logger.info("Problem solving completed") | |
return current_reasoning, current_solution | |
def run_test(swiftsage, problem, max_iterations=5, reward_threshold=8): | |
logger.info(f"Testing problem: {problem}") | |
reasoning, solution = swiftsage.solve(problem, max_iterations, reward_threshold) | |
logger.info(f"Final reasoning:\n{reasoning}") | |
logger.info(f"Final solution:\n{solution}") | |
logger.info("=" * 50) | |
def run_benchmark(swiftsage, args, max_iterations=5, reward_threshold=8): | |
examples = load_data(args.dataset_name, args.split, args.data_dir, args.num_test_sample) | |
res = [] | |
skip_ids = [] | |
output_path = os.path.join(args.output_path, f"{args.dataset_name}.jsonl") | |
if os.path.exists(output_path): | |
with open(output_path) as fr: | |
model_responses = fr.readlines() | |
for item in model_responses: | |
item = json.loads(item) | |
res.append(item) | |
skip_ids.append(item["idx"]) | |
for example in tqdm(examples, desc=args.dataset_name): | |
if example["idx"] in skip_ids: | |
continue | |
question = parse_question(example, args.dataset_name) | |
gt_ans = parse_ground_truth(example, args.dataset_name) | |
reasoning, solution = swiftsage.solve(question, max_iterations, reward_threshold) | |
# TODO: extract answer from solution | |
cur_res = { | |
"idx": example["idx"], | |
"question": question, | |
"gt": gt_ans, | |
"pred": solution, | |
"reasoning": reasoning, | |
} | |
res.append(cur_res) | |
with open(output_path, "a") as fw: | |
fw.write(json.dumps(res[-1]) + "\n") | |
# Evaluate the results | |
res, result_metric = evaluate(res) | |
with open(args.output_path, f"{args.dataset_name}_score.jsonl", "w") as fw: | |
for item in res: | |
fw.write(json.dumps(item) + "\n") | |
with open(args.output_path, f"{args.dataset_name}_metric.jsonl", "w") as fw: | |
fw.write(json.dumps(result_metric) + "\n") | |
def main(args): | |
# TODO: for retrieval augmentation (not implemented yet now) | |
# dataset = ["Example problem 1: ...", "Example problem 2: ...", "Example problem 3: ..."] | |
# embeddings = np.random.rand(len(dataset), 768) # Placeholder, replace with actual embeddings | |
# Configuration for each LLM | |
# swift_config = { | |
# "model_id": "Meta-Llama-3.1-8B-Instruct", | |
# "api_config": api_configs['SambaNova'] | |
# } | |
# reward_config = { | |
# "model_id": "Meta-Llama-3.1-70B-Instruct", | |
# "api_config": api_configs['SambaNova'] | |
# } | |
# sage_config = { | |
# "model_id": "Meta-Llama-3.1-405B-Instruct", | |
# "api_config": api_configs['SambaNova'] | |
# } | |
swift_config = { | |
"model_id": args.swift_model_id, | |
"api_config": api_configs[args.api_provider] | |
} | |
reward_config = { | |
"model_id": args.reward_model_id, | |
"api_config": api_configs[args.api_provider] | |
} | |
sage_config = { | |
"model_id": args.sage_model_id, | |
"api_config": api_configs[args.api_provider] | |
} | |
# specify the path to the prompt templates | |
prompt_template_dir = args.prompt_template_dir | |
dataset = [] | |
embeddings = [] # TODO: for retrieval augmentation (not implemented yet now) | |
s2 = SwiftSage( | |
dataset, | |
embeddings, | |
prompt_template_dir, | |
swift_config, | |
sage_config, | |
reward_config, | |
use_retrieval=args.use_retrieval, | |
start_with_sage=args.start_with_sage, | |
) | |
if args.eval_mode == "test": | |
test_problems = [ | |
"Solve the equation: 2x + 5 = 13", # 0 | |
"If h(x)=x-4 and g(h(x))=x^2-8x+10, find g(x)? show the formula for g(x)", # 1 | |
"Solve the equation: 6y + 5 = 29", # 2 | |
"Who lives longer, Lowell Sherman or Jonathan Kaplan?", # 3 | |
"9.9 or 9.11 -- which is bigger?", # 4 | |
"How can you solve the quadratic equation 3x^2 + 7x + 4 = 0 using the quadratic formula?", # 5 | |
"Explain why sound waves cannot travel in a vacuum?", # 6 | |
"How many grams of hydrogen (H) are present in 23.5 grams of water (H2O)?", # 7 | |
"What is the distance between the points (2, 3) and (5, 8)?", # 8 | |
"Why can the Hubble telescope capture clear images of distant stars and galaxies, but not a detailed image of Pluto?", # 9 | |
"""A rectangular band formation is a formation with $m$ band members in each of $r$ rows, where $m$ and $r$ are integers. A particular band has less than 100 band members. The director arranges them in a rectangular formation and finds that he has two members left over. If he increases the number of members in each row by 1 and reduces the number of rows by 2, there are exactly enough places in the new formation for each band member. What is the largest number of members the band could have?""", | |
"""Tim wants to invest some money in a bank which compounds quarterly with an annual interest rate of $7\%$. To the nearest dollar, how much money should he invest if he wants a total of $\$60,\!000$ at the end of $5$ years?""", | |
"""In an SR latch built from NOR gates, which condition is not allowed | |
Options: | |
[ "S=0, R=2", "S=2, R=2", "S=1, R=1", "S=1, R=-1", "S=1, R=2", "S=0, R=0", "S=2, R=0", "S=1, R=0", "S=2, R=1", "S=0, R=1" ] | |
Which one is the correct answer?""", | |
# ... add other problems here ... | |
"""How many letter r are there in the word "strawberry"?""" | |
] | |
# for problem in test_problems: | |
pid = 7 | |
print(f"Problem {pid}: {test_problems[pid]}") | |
run_test(s2, test_problems[pid], args.max_iterations, args.reward_threshold) | |
elif args.eval_mode == "benchmark": | |
run_benchmark(s2, args, args.max_iterations, args.reward_threshold) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--eval_mode", default="test", choices=["test", "benchmark"], type=str) | |
parser.add_argument("--dataset_name", default="MATH", type=str) | |
parser.add_argument("--data_dir", default="./data", type=str) | |
parser.add_argument("--split", default="test", type=str) | |
parser.add_argument("--num_test_sample", default=-1, type=int) # -1 for full data | |
parser.add_argument("--api_provider", default="Together", choices=["Together", "SambaNova"], type=str) | |
parser.add_argument("--swift_model_id", default="meta-llama/Meta-Llama-3-8B-Instruct-Turbo", type=str) | |
parser.add_argument("--reward_model_id", default="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", type=str) | |
parser.add_argument("--sage_model_id", default="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo", type=str) | |
parser.add_argument("--prompt_template_dir", default='./prompt_templates', type=str) | |
parser.add_argument("--use_retrieval", action="store_true") | |
parser.add_argument("--start_with_sage", action="store_true") | |
parser.add_argument("--max_iterations", default=5, type=int) | |
parser.add_argument("--reward_threshold", default=8, type=int) | |
parser.add_argument("--save_outputs", action="store_true") | |
parser.add_argument("--output_path", default="./output", type=str) | |
parser.add_argument("--overwrite", action="store_true") | |
args = parser.parse_args() | |
# remove console output for benchmark evaluation | |
if args.eval_mode != "test": | |
root_logger = logging.getLogger("") | |
for handler in root_logger.handlers: | |
if isinstance(handler, logging.StreamHandler): | |
root_logger.removeHandler(handler) | |
break | |
if args.api_provider == "SambaNova": | |
args.swift_model_id = args.swift_model_id.split("/")[-1][:-len("Turbo")] | |
args.reward_model_id = args.reward_model_id.split("/")[-1][:-len("Turbo")] | |
args.sage_model_id = args.sage_model_id.split("/")[-1][:-len("Turbo")] | |
multiprocessing.set_start_method('spawn') | |
main(args) | |