Spaces:
Runtime error
Runtime error
File size: 20,736 Bytes
1a0cf07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import argparse
import datetime
import json
import logging
import multiprocessing
import os
import re
from abc import ABC, abstractmethod
import hjson
import numpy as np
import openai
from tqdm import tqdm
from sklearn.metrics.pairwise import cosine_similarity
from data_loader import load_data
from code_executor import PythonExecutor
from utils import (Agent, LLMClient, PromptTemplate, api_configs,
extract_and_parse_markup, setup_logging)
from data_utils import parse_question, parse_ground_truth
from evaluate import evaluate
logger = setup_logging()
class RetrievalAugmentation:
# TODO: implement the retrieval augmentation later
def __init__(self, dataset, embeddings):
self.dataset = dataset
self.embeddings = embeddings
def get_similar_examples(self, query_embedding, n=3):
similarities = cosine_similarity([query_embedding], self.embeddings)[0]
top_indices = similarities.argsort()[-n:][::-1]
return [self.dataset[i] for i in top_indices]
class SwiftAgent(Agent):
def __init__(self, prompt_template, llm_client, retrieval_augmentation=None):
super().__init__(prompt_template, llm_client)
self.retrieval_augmentation = retrieval_augmentation
self.plans = {}
self.codes = {}
def generate_response(self, prompt, reasoning, current_solution, plan, critical_feedback, prefill=True):
logger.info("SwiftAgent generating response")
if self.retrieval_augmentation:
query_embedding = self.get_query_embedding(prompt)
similar_examples = self.retrieval_augmentation.get_similar_examples(query_embedding)
examples_text = "\n".join(similar_examples) # TODO: add more context to the prompt
else:
examples_text = "No similar examples available."
swift_prompt = self.prompt_template.format(
"swift",
prompt=prompt,
current_reasoning=reasoning, # TODO: check if this is needed
examples=examples_text,
current_solution=current_solution,
critical_feedback=critical_feedback,
revised_plan=plan
)
# logger.info(f"SwiftAgent prompt:\n{swift_prompt}")
messages = [
{"role": "system", "content": ''},
{"role": "user", "content": swift_prompt}
]
if prefill:
messages.append({"role": "assistant", "content": "<plan>"}) # prefix-filling
response = self.llm_client.generate_response(messages)
if prefill:
response = "<plan>" + response
try:
parsed_response = extract_and_parse_markup(response)
return parsed_response
except json.JSONDecodeError:
logger.error("Error: Swift's response was not in valid JSON format. Returning raw response.")
return response
def get_query_embedding(self, query):
# Implement query embedding generation
return np.random.rand(768) # Placeholder, replace with actual embedding
class SageAgent(Agent):
def __init__(self, prompt_template, llm_client):
super().__init__(prompt_template, llm_client)
self.feedbacks = {}
self.plans = {}
def generate_response(self, prompt, reasoning, current_solution, prefill=True):
logger.info("SageAgent generating response")
sage_prompt = self.prompt_template.format(
"sage",
prompt=prompt,
reasoning=reasoning,
current_solution=current_solution
)
# logger.info(f"SageAgent prompt:\n{sage_prompt}")
messages = [
{"role": "system", "content": ""},
{"role": "user", "content": sage_prompt}
]
if prefill:
messages.append({"role": "assistant", "content": "<solved>"}) # prefix-filling
response = self.llm_client.generate_response(messages)
# logger.info(f"SageAgent raw response:\n{response}")
if prefill:
response = "<solved>" + response
try:
parsed_response = extract_and_parse_markup(response)
return parsed_response
except json.JSONDecodeError:
logger.error("Error: Sage's response was not in valid JSON format. Returning raw response.")
return response
class RewardModel:
def __init__(self, prompt_template, llm_client):
self.prompt_template = prompt_template
self.llm_client = llm_client
self.scores = []
self.feedbacks = []
self.stagnant_count = 0
def calculate_reward(self, problem, reasoning, current_solution, prefill=True):
reward_prompt = self.prompt_template.format(
"reward",
problem=problem,
reasoning= reasoning,
current_solution=current_solution
)
# logger.info(f"RewardModel prompt:\n{reward_prompt}")
messages = [
{"role": "system", "content": ""},
{"role": "user", "content": reward_prompt}
]
if prefill:
messages.append({"role": "assistant", "content": "<feedback>"}) # prefix-filling
reward_response = self.llm_client.generate_response(messages)
if prefill:
reward_response = "<feedback>" + reward_response
try:
parsed_response = extract_and_parse_markup(reward_response)
score = int(parsed_response["score"])
# Update stagnant_count based on score comparison
if len(self.scores) > 0 and score <= self.scores[-1]:
self.stagnant_count += 1
else:
self.stagnant_count = 0
return parsed_response
except json.JSONDecodeError:
logger.error("Error: Reward model's response was not in valid JSON format. Returning raw response.")
return reward_response
def should_consult_sage(self):
# This method remains unchanged
return self.stagnant_count >= 1 or (len(self.scores) > 0 and self.scores[-1] < 5)
class SwiftSage:
def __init__(self, dataset, embeddings, prompt_template_dir, swift_config, sage_config, reward_config, use_retrieval=True, start_with_sage=False):
prompt_template = PromptTemplate(prompt_template_dir)
retrieval_augmentation = RetrievalAugmentation(dataset, embeddings) if use_retrieval else None
# add logger to the following LLMClient
swift_llm = LLMClient(**swift_config, logger=logger)
sage_llm = LLMClient(**sage_config, logger=logger)
reward_llm = LLMClient(**reward_config, logger=logger)
self.swift = SwiftAgent(prompt_template, swift_llm, retrieval_augmentation)
self.sage = SageAgent(prompt_template, sage_llm)
self.reward_model = RewardModel(prompt_template, reward_llm)
self.start_with_sage = start_with_sage
# self.executor = PythonExecutor(get_answer_from_stdout=True)
def solve(self, problem, max_iterations=10, reward_threshold=8):
logger.info(f"Starting to solve problem: {problem}")
current_solution = "No current solution yet." # final answer
current_reasoning = "No reasoning steps yet." # reasoning steps
plan = "Initial plan: Take a deep breath and think step by step."
critical_feedback = "No critical feedback yet." # Initialize critical_feedback
solved = False
for i in range(max_iterations):
logger.info(f"Iteration {i+1}")
# Use the Sage Agent
if (i == 0 and self.start_with_sage) or self.reward_model.should_consult_sage():
sage_parsed = self.sage.generate_response(problem, current_reasoning, current_solution)
critical_feedback = sage_parsed["critical_feedback"]
# plan = "\n - " + "\n - ".join(sage_parsed["revised_plan"])
current_reasoning = sage_parsed["reasoning_steps"]
current_code = sage_parsed["code"]
solved = sage_parsed["solved"].lower() == "true" if i != 0 else sage_parsed["solved"]
if solved:
return current_reasoning, current_solution
logger.info(f"Sage's feedback (iteration {i+1}):\n{critical_feedback}")
# logger.info(f"Sage's reasoning steps:\n{current_reasoning}")
self.sage.feedbacks[i] = critical_feedback
# run the code
executor = PythonExecutor(get_answer_from_stdout=True)
code_result, code_report = executor.apply(current_code)
logger.info(f"Sage Code execution report: {code_report}")
logger.info(f"Sage Code execution result: {code_result}")
current_reasoning = current_reasoning + f"\n\nThe generated code is:\n\n```python\n{current_code}\n```"
current_solution = "Answer (from running the code):\n " + code_result
# current_solution = sage_parsed["final_answer"]
logger.info("Activated Sage, so we should return the reasoning and solution from Sage.")
return current_reasoning, current_solution
if not solved:
# Use the Swift Agent
swift_parsed = self.swift.generate_response(problem, current_reasoning, current_solution, plan, critical_feedback)
if "code" not in swift_parsed and "final_answer" not in swift_parsed:
logger.info("Swift's response does not contain the 'final_answer' or 'code' field. Returning raw response.")
self.reward_model.scores.append(0)
self.reward_model.feedbacks.append("No feedback")
self.reward_model.stagnant_count += max_iterations # force to use Sage Agent
continue
current_plan = swift_parsed["plan"]
current_code = swift_parsed["code"]
current_answer = swift_parsed.get("final_answer", None)
self.swift.plans[i] = current_plan
self.swift.codes[i] = current_code
logger.info(f"Swift's plan:\n{current_plan}")
logger.info(f"Swift's code:\n{current_code}")
# Call sandbox to run the code and get the result
executor = PythonExecutor(get_answer_from_stdout=True)
code_result, code_report = executor.apply(current_code)
logger.info(f"Code execution report: {code_report}")
logger.info(f"Code execution result: {code_result}")
current_reasoning = current_plan + f"\nThe generated code is:\n```python\n{current_code}\n```"
current_solution = "Answer (from running the code):\n " + code_result
# Calling the reward model to provide feedback and score
reward_parsed = self.reward_model.calculate_reward(problem, current_reasoning, current_solution)
score = int(reward_parsed["score"])
feedback = reward_parsed["feedback"]
prev_score = self.reward_model.scores[-1] if len(self.reward_model.scores) > 0 else 0
self.reward_model.scores.append(score)
self.reward_model.feedbacks.append(feedback)
# detect if the score is lower than the previous score
logger.info(f"Reward for iteration {i+1}: {score}/10")
logger.info(f"Feedback: {feedback}")
if False and score < prev_score:
logger.info("Score is lower than the previous score. Stopping the iteration. Reverting to the previous solution and reasoning.")
# revert to the previous solution and reasoning
current_solution = self.swift.codes[i-1]
current_reasoning = self.swift.plans[i-1]
continue
critical_feedback = feedback
if score >= reward_threshold or solved:
logger.info("Perfect solution found!")
return current_reasoning, current_solution
if self.reward_model.should_consult_sage():
logger.info("Reward model: The solution quality hasn't improved recently. Consulting Sage for the next iteration.")
logger.info("Max iterations reached without finding a perfect solution.")
logger.info("Problem solving completed")
return current_reasoning, current_solution
def run_test(swiftsage, problem, max_iterations=5, reward_threshold=8):
logger.info(f"Testing problem: {problem}")
reasoning, solution = swiftsage.solve(problem, max_iterations, reward_threshold)
logger.info(f"Final reasoning:\n{reasoning}")
logger.info(f"Final solution:\n{solution}")
logger.info("=" * 50)
def run_benchmark(swiftsage, args, max_iterations=5, reward_threshold=8):
examples = load_data(args.dataset_name, args.split, args.data_dir, args.num_test_sample)
res = []
skip_ids = []
output_path = os.path.join(args.output_path, f"{args.dataset_name}.jsonl")
if os.path.exists(output_path):
with open(output_path) as fr:
model_responses = fr.readlines()
for item in model_responses:
item = json.loads(item)
res.append(item)
skip_ids.append(item["idx"])
for example in tqdm(examples, desc=args.dataset_name):
if example["idx"] in skip_ids:
continue
question = parse_question(example, args.dataset_name)
gt_ans = parse_ground_truth(example, args.dataset_name)
reasoning, solution = swiftsage.solve(question, max_iterations, reward_threshold)
# TODO: extract answer from solution
cur_res = {
"idx": example["idx"],
"question": question,
"gt": gt_ans,
"pred": solution,
"reasoning": reasoning,
}
res.append(cur_res)
with open(output_path, "a") as fw:
fw.write(json.dumps(res[-1]) + "\n")
# Evaluate the results
res, result_metric = evaluate(res)
with open(args.output_path, f"{args.dataset_name}_score.jsonl", "w") as fw:
for item in res:
fw.write(json.dumps(item) + "\n")
with open(args.output_path, f"{args.dataset_name}_metric.jsonl", "w") as fw:
fw.write(json.dumps(result_metric) + "\n")
def main(args):
# TODO: for retrieval augmentation (not implemented yet now)
# dataset = ["Example problem 1: ...", "Example problem 2: ...", "Example problem 3: ..."]
# embeddings = np.random.rand(len(dataset), 768) # Placeholder, replace with actual embeddings
# Configuration for each LLM
# swift_config = {
# "model_id": "Meta-Llama-3.1-8B-Instruct",
# "api_config": api_configs['SambaNova']
# }
# reward_config = {
# "model_id": "Meta-Llama-3.1-70B-Instruct",
# "api_config": api_configs['SambaNova']
# }
# sage_config = {
# "model_id": "Meta-Llama-3.1-405B-Instruct",
# "api_config": api_configs['SambaNova']
# }
swift_config = {
"model_id": args.swift_model_id,
"api_config": api_configs[args.api_provider]
}
reward_config = {
"model_id": args.reward_model_id,
"api_config": api_configs[args.api_provider]
}
sage_config = {
"model_id": args.sage_model_id,
"api_config": api_configs[args.api_provider]
}
# specify the path to the prompt templates
prompt_template_dir = args.prompt_template_dir
dataset = []
embeddings = [] # TODO: for retrieval augmentation (not implemented yet now)
s2 = SwiftSage(
dataset,
embeddings,
prompt_template_dir,
swift_config,
sage_config,
reward_config,
use_retrieval=args.use_retrieval,
start_with_sage=args.start_with_sage,
)
if args.eval_mode == "test":
test_problems = [
"Solve the equation: 2x + 5 = 13", # 0
"If h(x)=x-4 and g(h(x))=x^2-8x+10, find g(x)? show the formula for g(x)", # 1
"Solve the equation: 6y + 5 = 29", # 2
"Who lives longer, Lowell Sherman or Jonathan Kaplan?", # 3
"9.9 or 9.11 -- which is bigger?", # 4
"How can you solve the quadratic equation 3x^2 + 7x + 4 = 0 using the quadratic formula?", # 5
"Explain why sound waves cannot travel in a vacuum?", # 6
"How many grams of hydrogen (H) are present in 23.5 grams of water (H2O)?", # 7
"What is the distance between the points (2, 3) and (5, 8)?", # 8
"Why can the Hubble telescope capture clear images of distant stars and galaxies, but not a detailed image of Pluto?", # 9
"""A rectangular band formation is a formation with $m$ band members in each of $r$ rows, where $m$ and $r$ are integers. A particular band has less than 100 band members. The director arranges them in a rectangular formation and finds that he has two members left over. If he increases the number of members in each row by 1 and reduces the number of rows by 2, there are exactly enough places in the new formation for each band member. What is the largest number of members the band could have?""",
"""Tim wants to invest some money in a bank which compounds quarterly with an annual interest rate of $7\%$. To the nearest dollar, how much money should he invest if he wants a total of $\$60,\!000$ at the end of $5$ years?""",
"""In an SR latch built from NOR gates, which condition is not allowed
Options:
[ "S=0, R=2", "S=2, R=2", "S=1, R=1", "S=1, R=-1", "S=1, R=2", "S=0, R=0", "S=2, R=0", "S=1, R=0", "S=2, R=1", "S=0, R=1" ]
Which one is the correct answer?""",
# ... add other problems here ...
"""How many letter r are there in the word "strawberry"?"""
]
# for problem in test_problems:
pid = 7
print(f"Problem {pid}: {test_problems[pid]}")
run_test(s2, test_problems[pid], args.max_iterations, args.reward_threshold)
elif args.eval_mode == "benchmark":
run_benchmark(s2, args, args.max_iterations, args.reward_threshold)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--eval_mode", default="test", choices=["test", "benchmark"], type=str)
parser.add_argument("--dataset_name", default="MATH", type=str)
parser.add_argument("--data_dir", default="./data", type=str)
parser.add_argument("--split", default="test", type=str)
parser.add_argument("--num_test_sample", default=-1, type=int) # -1 for full data
parser.add_argument("--api_provider", default="Together", choices=["Together", "SambaNova"], type=str)
parser.add_argument("--swift_model_id", default="meta-llama/Meta-Llama-3-8B-Instruct-Turbo", type=str)
parser.add_argument("--reward_model_id", default="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", type=str)
parser.add_argument("--sage_model_id", default="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo", type=str)
parser.add_argument("--prompt_template_dir", default='./prompt_templates', type=str)
parser.add_argument("--use_retrieval", action="store_true")
parser.add_argument("--start_with_sage", action="store_true")
parser.add_argument("--max_iterations", default=5, type=int)
parser.add_argument("--reward_threshold", default=8, type=int)
parser.add_argument("--save_outputs", action="store_true")
parser.add_argument("--output_path", default="./output", type=str)
parser.add_argument("--overwrite", action="store_true")
args = parser.parse_args()
# remove console output for benchmark evaluation
if args.eval_mode != "test":
root_logger = logging.getLogger("")
for handler in root_logger.handlers:
if isinstance(handler, logging.StreamHandler):
root_logger.removeHandler(handler)
break
if args.api_provider == "SambaNova":
args.swift_model_id = args.swift_model_id.split("/")[-1][:-len("Turbo")]
args.reward_model_id = args.reward_model_id.split("/")[-1][:-len("Turbo")]
args.sage_model_id = args.sage_model_id.split("/")[-1][:-len("Turbo")]
multiprocessing.set_start_method('spawn')
main(args)
|