File size: 32,831 Bytes
7fe8a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340485a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13369a
 
 
c72ee7d
10773b5
a13369a
ddfce31
a7046e3
75625d1
ddfce31
a13369a
10773b5
 
 
 
 
 
ddfce31
 
 
a13369a
ddfce31
 
 
 
 
a13369a
690f9c4
a13369a
 
 
 
 
 
 
 
 
 
 
 
e10e859
9ab77fe
 
 
 
 
 
 
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89270af
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10e859
 
a13369a
 
 
 
 
 
 
 
e10e859
 
 
 
 
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612947c
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
0444ea4
 
 
a13369a
 
0444ea4
 
a13369a
0444ea4
 
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
e17f634
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89270af
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c16a063
0ad1803
3145ec5
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c16a063
89270af
 
c16a063
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17f634
a13369a
e17f634
3145ec5
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3145ec5
a13369a
 
 
 
 
 
 
ddfce31
a13369a
a8002a7
c72ee7d
a13369a
bcb3f59
 
 
 
 
 
 
 
a13369a
 
0ad1803
c16a063
 
 
3145ec5
0ad1803
3145ec5
 
0ad1803
3145ec5
a13369a
0ad1803
c16a063
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7254f24
 
9ab77fe
a13369a
 
 
 
 
 
 
 
 
a8002a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612947c
c3e8de9
ddfce31
a13369a
 
 
e758c8f
a13369a
 
 
612947c
 
 
 
 
 
 
 
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1f37f
e10e859
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907e99a
a13369a
 
 
 
 
 
bcb3f59
9ab77fe
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340485a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddfce31
a13369a
 
 
 
 
 
 
 
ddfce31
a13369a
 
 
690f9c4
e10e859
a13369a
 
 
 
 
 
 
 
 
 
690f9c4
340485a
 
c72ee7d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
'''
sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm
# Clone this repository
git clone https://huggingface.co/spaces/svjack/SAM2Long-Demo
# Go into the repository
cd SAM2Long-Demo
### Install dependencies ###
conda create --name py310 python=3.10
conda activate py310
# Install ipykernel and add the environment to Jupyter
pip install ipykernel
python -m ipykernel install --user --name py310 --display-name "py310"
pip install -r requirements.txt
python app.py
'''

from datasets import load_dataset 
vid_ds = load_dataset("svjack/video-dataset-genshin-impact-ep-character-organized")

import decord
import cv2
import os

def save_video_to_mp4(input_video, output_path):
    """
    将 decord.VideoReader 读取的视频或视频文件保存为 MP4 文件。

    参数:
        input_video (str 或 decord.VideoReader): 视频文件路径或 decord.VideoReader 对象。
        output_path (str): 输出 MP4 文件的路径。
    """
    # 如果输入是路径,则创建 VideoReader 对象
    if isinstance(input_video, str):
        vr = decord.VideoReader(input_video)
    elif isinstance(input_video, decord.VideoReader):
        vr = input_video
    else:
        raise ValueError("输入必须是视频文件路径或 decord.VideoReader 对象")

    # 获取视频的基本信息
    fps = vr.get_avg_fps()
    width = vr[0].shape[1]
    height = vr[0].shape[0]

    # 创建 VideoWriter 对象
    #fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # 编码器
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # 编码器
    out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))

    # 逐帧读取并写入
    for frame in vr:
        frame = frame.asnumpy()  # 将 decord 帧转换为 numpy 数组
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)  # 转换颜色空间
        out.write(frame)

    # 释放资源
    out.release()
    print(f"视频已保存为 {output_path}")

#rd = vid_ds["train"][0]["video"]
#rd
#save_video_to_mp4(rd, "output_video.mp4")

out_dir = "examples"
import shutil 
from uuid import uuid1
from tqdm import tqdm
if os.path.exists(out_dir):
    shutil.rmtree(out_dir)

vid_l = []
os.makedirs(out_dir, exist_ok = True)
for exp in tqdm(vid_ds["train"]):
    rd = exp["video"]
    target_path = os.path.join(out_dir, "{}.mp4".format(uuid1()))
    vid_l.append(target_path)
    save_video_to_mp4(rd, target_path)
    if len(vid_l) >= 10:
        break


import subprocess
import re
from typing import List, Tuple, Optional
#import spaces

# Define the command to be executed
command = ["python", "setup.py", "build_ext", "--inplace"]

# Execute the command
result = subprocess.run(command, capture_output=True, text=True)

css="""
div#component-18, div#component-25, div#component-35, div#component-41{
    align-items: stretch!important;
}
"""

# Print the output and error (if any)
print("Output:\n", result.stdout)
print("Errors:\n", result.stderr)

# Check if the command was successful
if result.returncode == 0:
    print("Command executed successfully.")
else:
    print("Command failed with return code:", result.returncode)

import gradio as gr
from datetime import datetime
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2_video_predictor

from moviepy.editor import ImageSequenceClip

def sparse_sampling(jpeg_images, original_fps, target_fps=6):
    # Calculate the frame interval for sampling based on the target fps
    frame_interval = int(original_fps // target_fps)
    
    # Sparse sample the jpeg_images by selecting every 'frame_interval' frame
    sampled_images = [jpeg_images[i] for i in range(0, len(jpeg_images), frame_interval)]
    
    return sampled_images

def get_video_fps(video_path):
    # Open the video file
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        print("Error: Could not open video.")
        return None
    
    # Get the FPS of the video
    fps = cap.get(cv2.CAP_PROP_FPS)

    return fps

def clear_points(image):
    # we clean all
    return [
        image,   # first_frame_path
        [],      # tracking_points
        [],      # trackings_input_label
        image,   # points_map
        #gr.State()     # stored_inference_state
    ]

def preprocess_video_in(video_path):

    # Generate a unique ID based on the current date and time
    unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
    
    # Set directory with this ID to store video frames 
    extracted_frames_output_dir = f'frames_{unique_id}'
    
    # Create the output directory
    os.makedirs(extracted_frames_output_dir, exist_ok=True)

    ### Process video frames ###
    # Open the video file
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        print("Error: Could not open video.")
        return None

    # Get the frames per second (FPS) of the video
    fps = cap.get(cv2.CAP_PROP_FPS)
    
    # Calculate the number of frames to process (60 seconds of video)
    max_frames = int(fps * 60)
    
    frame_number = 0
    first_frame = None
    
    while True:
        ret, frame = cap.read()
        if not ret or frame_number >= max_frames:
            break
        if frame_number % 6 == 0:
            # Format the frame filename as '00000.jpg'
            frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg')
            
            # Save the frame as a JPEG file
            cv2.imwrite(frame_filename, frame)
        
        # Store the first frame
        if frame_number == 0:
            first_frame = frame_filename
        
        frame_number += 1
    
    # Release the video capture object
    cap.release()
    
    # scan all the JPEG frame names in this directory
    scanned_frames = [
        p for p in os.listdir(extracted_frames_output_dir)
        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
    ]
    scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
    # print(f"SCANNED_FRAMES: {scanned_frames}")
    
    return [
        first_frame,           # first_frame_path
        [],          # tracking_points
        [],          # trackings_input_label
        first_frame,           # input_first_frame_image
        first_frame,           # points_map
        extracted_frames_output_dir,            # video_frames_dir
        scanned_frames,        # scanned_frames
        None,                  # stored_inference_state
        None,                  # stored_frame_names
        gr.update(open=False)  # video_in_drawer
    ]

def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData):
    print(f"You selected {evt.value} at {evt.index} from {evt.target}")

    tracking_points.append(evt.index)
    # tracking_points.value.append(evt.index)
    print(f"TRACKING POINT: {tracking_points}")

    if point_type == "include":
        trackings_input_label.append(1)
        # trackings_input_label.value.append(1)
    elif point_type == "exclude":
        trackings_input_label.append(0)
        # trackings_input_label.value.append(0)
    print(f"TRACKING INPUT LABEL: {trackings_input_label}")
    
    # Open the image and get its dimensions
    transparent_background = Image.open(input_first_frame_image).convert('RGBA')
    w, h = transparent_background.size
    
    # Define the circle radius as a fraction of the smaller dimension
    fraction = 0.02  # You can adjust this value as needed
    radius = int(fraction * min(w, h))
    
    # Create a transparent layer to draw on
    transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
    
    for index, track in enumerate(tracking_points):
        if trackings_input_label[index] == 1:
            cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
        else:
            cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)

    # Convert the transparent layer back to an image
    transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
    selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
    
    return tracking_points, trackings_input_label, selected_point_map
    

    
def show_mask(mask, ax, obj_id=None, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        cmap = plt.get_cmap("tab10")
        cmap_idx = 0 if obj_id is None else obj_id
        color = np.array([*cmap(cmap_idx)[:3], 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)


def show_points(coords, labels, ax, marker_size=200):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)

def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))    


def load_model(checkpoint):
    # Load model accordingly to user's choice
    if checkpoint == "tiny":
        sam2_checkpoint = "./checkpoints/sam2.1_hiera_tiny.pt"
        model_cfg = "configs/sam2.1/sam2.1_hiera_t.yaml"
        return [sam2_checkpoint, model_cfg]
    elif checkpoint == "samll":
        sam2_checkpoint = "./checkpoints/sam2.1_hiera_small.pt"
        model_cfg = "configs/sam2.1/sam2.1_hiera_s.yaml"
        return [sam2_checkpoint, model_cfg]
    elif checkpoint == "base-plus":
        sam2_checkpoint = "./checkpoints/sam2.1_hiera_base_plus.pt"
        model_cfg = "configs/sam2.1/sam2.1_hiera_b+.yaml"
        return [sam2_checkpoint, model_cfg]
    # elif checkpoint == "large":
    #     sam2_checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
    #     model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
    #     return [sam2_checkpoint, model_cfg]

    

def get_mask_sam_process(
    stored_inference_state,
    input_first_frame_image, 
    checkpoint, 
    tracking_points, 
    trackings_input_label, 
    video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
    scanned_frames, 
    working_frame: str = None, # current frame being added points
    available_frames_to_check: List[str] = [],
    # progress=gr.Progress(track_tqdm=True)
):
    
    # get model and model config paths
    print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
    sam2_checkpoint, model_cfg = load_model(checkpoint)
    print("MODEL LOADED")

    # set predictor 
    
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
        
    print("PREDICTOR READY")

    # `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
    # print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
    video_dir = video_frames_dir
    
    # scan all the JPEG frame names in this directory
    frame_names = scanned_frames

    # print(f"STORED INFERENCE STEP: {stored_inference_state}")
    if stored_inference_state is None:
        # Init SAM2 inference_state
        inference_state = predictor.init_state(video_path=video_dir)
        inference_state['num_pathway'] = 3
        inference_state['iou_thre'] = 0.3
        inference_state['uncertainty'] = 2
        print("NEW INFERENCE_STATE INITIATED")
    else:
        inference_state = stored_inference_state



    inference_state["device"] = 'cpu'
        
    # segment and track one object
    # predictor.reset_state(inference_state) # if any previous tracking, reset
    

    ### HANDLING WORKING FRAME
    # new_working_frame = None
    # Add new point
    if working_frame is None:
        ann_frame_idx = 0  # the frame index we interact with, 0 if it is the first frame
        working_frame = "00000.jpg"
    else:
        # Use a regular expression to find the integer
        match = re.search(r'frame_(\d+)', working_frame)
        if match:
            # Extract the integer from the match
            frame_number = int(match.group(1))
            ann_frame_idx = frame_number
            
    print(f"NEW_WORKING_FRAME PATH: {working_frame}")
    
    ann_obj_id = 1  # give a unique id to each object we interact with (it can be any integers)
    
    # Let's add a positive click at (x, y) = (210, 350) to get started
    points = np.array(tracking_points, dtype=np.float32)
    # for labels, `1` means positive click and `0` means negative click
    labels = np.array(trackings_input_label, np.int32)


    _, out_obj_ids, out_mask_logits = predictor.add_new_points(
        inference_state=inference_state,
        frame_idx=ann_frame_idx,
        obj_id=ann_obj_id,
        points=points,
        labels=labels,
    )

    # Create the plot
    plt.figure(figsize=(12, 8))
    plt.title(f"frame {ann_frame_idx}")
    plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
    show_points(points, labels, plt.gca())
    show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
    
    # Save the plot as a JPG file
    first_frame_output_filename = "output_first_frame.jpg"
    plt.savefig(first_frame_output_filename, format='jpg')
    plt.close()
    # torch.cuda.empty_cache()

    # Assuming available_frames_to_check.value is a list
    if working_frame not in available_frames_to_check:
        available_frames_to_check.append(working_frame)
        print(available_frames_to_check)
    
    # return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)
    return "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=False)

'''
#@spaces.GPU
def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame, progress=gr.Progress(track_tqdm=True)):   
    # use bfloat16 for the entire notebook
    torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()

    if torch.cuda.get_device_properties(0).major >= 8:
        # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True
    
    #### PROPAGATION ####
    sam2_checkpoint, model_cfg = load_model(checkpoint)
    # set predictor 
   
    inference_state = stored_inference_state

    if torch.cuda.is_available():
        inference_state["device"] = 'cuda'
        predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
    else:
        inference_state["device"] = 'cpu'
        predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
    

    
    frame_names = stored_frame_names
    video_dir = video_frames_dir
    
    # Define a directory to save the JPEG images
    frames_output_dir = "frames_output_images"
    os.makedirs(frames_output_dir, exist_ok=True)
    
    # Initialize a list to store file paths of saved images
    jpeg_images = []

    # run propagation throughout the video and collect the results in a dict
    video_segments = {}  # video_segments contains the per-frame segmentation results
    # for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
    #     video_segments[out_frame_idx] = {
    #         out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
    #         for i, out_obj_id in enumerate(out_obj_ids)
    #     }
    
    out_obj_ids, out_mask_logits = predictor.propagate_in_video(inference_state, start_frame_idx=0, reverse=False,)
    print(out_obj_ids)
    for frame_idx in range(0, inference_state['num_frames']):
        
        video_segments[frame_idx] = {out_obj_ids[0]: (out_mask_logits[frame_idx]> 0.0).cpu().numpy()}
        # output_scores_per_object[object_id][frame_idx] = out_mask_logits[frame_idx].cpu().numpy()

    # render the segmentation results every few frames
    if vis_frame_type == "check":
        vis_frame_stride = 15
    elif vis_frame_type == "render":
        vis_frame_stride = 1
    
    plt.close("all")
    for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
        plt.figure(figsize=(6, 4))
        plt.title(f"frame {out_frame_idx}")
        plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
        for out_obj_id, out_mask in video_segments[out_frame_idx].items():
            show_mask(out_mask, plt.gca(), obj_id=out_obj_id)

        # Define the output filename and save the figure as a JPEG file
        output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
        plt.savefig(output_filename, format='jpg')
    
        # Close the plot
        plt.close()

        # Append the file path to the list
        jpeg_images.append(output_filename)

        if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
            available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")

    torch.cuda.empty_cache()
    print(f"JPEG_IMAGES: {jpeg_images}")

    if vis_frame_type == "check":
        return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True)
    elif vis_frame_type == "render":
        # Create a video clip from the image sequence
        original_fps = get_video_fps(video_in)
        # sampled_images = sparse_sampling(jpeg_images, original_fps, target_fps=6)
        clip = ImageSequenceClip(jpeg_images, fps=original_fps//6)
        # clip = ImageSequenceClip(jpeg_images, fps=fps)
        # Write the result to a file
        final_vid_output_path = "output_video.mp4"
        
        # Write the result to a file
        clip.write_videofile(
            final_vid_output_path,
            codec='libx264'
        )
        
        return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True)
'''

import json
import numpy as np

def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame, progress=gr.Progress(track_tqdm=True)):
    # use bfloat16 for the entire notebook
    torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()

    if torch.cuda.get_device_properties(0).major >= 8:
        # turn on tfloat32 for Ampere GPUs
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True

    #### PROPAGATION ####
    sam2_checkpoint, model_cfg = load_model(checkpoint)
    # set predictor
    inference_state = stored_inference_state

    if torch.cuda.is_available():
        inference_state["device"] = 'cuda'
        predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
    else:
        inference_state["device"] = 'cpu'
        predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')

    frame_names = stored_frame_names
    video_dir = video_frames_dir

    # Define a directory to save the JPEG images
    frames_output_dir = "frames_output_images"
    os.makedirs(frames_output_dir, exist_ok=True)

    # Initialize a list to store file paths of saved images
    jpeg_images = []

    # Initialize a list to store mask area ratios
    mask_area_ratios = []

    # run propagation throughout the video and collect the results in a dict
    video_segments = {}  # video_segments contains the per-frame segmentation results
    out_obj_ids, out_mask_logits = predictor.propagate_in_video(inference_state, start_frame_idx=0, reverse=False)
    print(out_obj_ids)
    for frame_idx in range(0, inference_state['num_frames']):
        video_segments[frame_idx] = {out_obj_ids[0]: (out_mask_logits[frame_idx] > 0.0).cpu().numpy()}

        # Calculate mask area ratio
        mask = video_segments[frame_idx][out_obj_ids[0]]
        mask_area = np.sum(mask)  # Number of True pixels in the mask
        total_area = mask.shape[0] * mask.shape[1]  # Total number of pixels in the frame
        mask_area_ratio = mask_area / total_area  # Ratio of mask area to total area

        mask_area_ratio = mask_area / np.ones_like(mask).sum()
        
        mask_area_ratios.append(mask_area_ratio)

    # Save mask area ratios as a JSON file
    mask_area_ratios_dict = {f"frame_{frame_idx}": ratio for frame_idx, ratio in enumerate(mask_area_ratios)}
    with open("mask_area_ratios.json", "w") as f:
        json.dump(mask_area_ratios_dict, f, indent=4)

    # render the segmentation results every few frames
    if vis_frame_type == "check":
        vis_frame_stride = 15
    elif vis_frame_type == "render":
        vis_frame_stride = 1

    plt.close("all")
    for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
        plt.figure(figsize=(6, 4))
        plt.title(f"frame {out_frame_idx}")
        plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
        for out_obj_id, out_mask in video_segments[out_frame_idx].items():
            show_mask(out_mask, plt.gca(), obj_id=out_obj_id)

        # Define the output filename and save the figure as a JPEG file
        output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
        plt.savefig(output_filename, format='jpg')

        # Close the plot
        plt.close()

        # Append the file path to the list
        jpeg_images.append(output_filename)

        if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
            available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")

    torch.cuda.empty_cache()
    print(f"JPEG_IMAGES: {jpeg_images}")

    if vis_frame_type == "check":
        return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True), mask_area_ratios_dict
    elif vis_frame_type == "render":
        # Create a video clip from the image sequence
        original_fps = get_video_fps(video_in)
        clip = ImageSequenceClip(jpeg_images, fps=original_fps // 6)
        final_vid_output_path = "output_video.mp4"
        clip.write_videofile(final_vid_output_path, codec='libx264')

        return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True)

def update_ui(vis_frame_type):
    if vis_frame_type == "check":
        return gr.update(visible=True), gr.update(visible=False)
    elif vis_frame_type == "render":
        return gr.update(visible=False), gr.update(visible=True)

def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
    new_working_frame = None
    if working_frame == None:
        new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
        
    else:
        # Use a regular expression to find the integer
        match = re.search(r'frame_(\d+)', working_frame)
        if match:
            # Extract the integer from the match
            frame_number = int(match.group(1))
            ann_frame_idx = frame_number
            new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx])
    return gr.State([]), gr.State([]), new_working_frame, new_working_frame

def reset_propagation(first_frame_path, predictor, stored_inference_state):
    
    predictor.reset_state(stored_inference_state)
    # print(f"RESET State: {stored_inference_state} ")
    return first_frame_path, [], [], gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False)


with gr.Blocks(css=css) as demo:
    first_frame_path = gr.State()
    tracking_points = gr.State([])
    trackings_input_label = gr.State([])
    video_frames_dir = gr.State()
    scanned_frames = gr.State()
    loaded_predictor = gr.State()
    stored_inference_state = gr.State()
    stored_frame_names = gr.State()
    available_frames_to_check = gr.State([])
    with gr.Column():
        gr.Markdown(
            """
            <h1 style="text-align: center;">🔥 SAM2Long Demo 🔥</h1>
            """
        )
        gr.Markdown(
            """
            This is a simple demo for video segmentation with [SAM2Long](https://github.com/Mark12Ding/SAM2Long).
            """
        )
        gr.Markdown(
            """
            ### 📋 Instructions:
            It is largely built on the [SAM2-Video-Predictor](https://huggingface.co/spaces/fffiloni/SAM2-Video-Predictor).
            1. **Upload your video** [MP4-24fps]
            2. With **'include' point type** selected, click on the object to mask on the first frame
            3. Switch to **'exclude' point type** if you want to specify an area to avoid
            4. **Get Mask!**
            5. **Check Propagation** every 15 frames
            6. **Propagate with "render"** to render the final masked video
            7. **Hit Reset** button if you want to refresh and start again
            
            *Note: Input video will be processed for up to 60 seconds only for demo purposes.*
            """
        )
        with gr.Row():
            
            with gr.Column():
                with gr.Group():
                    with gr.Group():
                        with gr.Row():
                            point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
                            clear_points_btn = gr.Button("Clear Points", scale=1)
                    
                    input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)                 
                    
                    points_map = gr.Image(
                        label="Point n Click map", 
                        type="filepath",
                        interactive=False
                    )
    
                    with gr.Group():
                        with gr.Row():
                            checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus"], value="tiny")
                            submit_btn = gr.Button("Get Mask", size="lg")

                with gr.Accordion("Your video IN", open=True) as video_in_drawer:
                    video_in = gr.Video(label="Video IN", format="mp4")

                gr.HTML("""
                
                <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
                    <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                </a> to skip queue and avoid OOM errors from heavy public load
                """)
            
            with gr.Column():
                with gr.Group():
                    # with gr.Group():
                        # with gr.Row():
                    working_frame = gr.Dropdown(label="working frame ID", choices=["frame_0.jpg"], value="frame_0.jpg", visible=False, allow_custom_value=False, interactive=True)
                        #     change_current = gr.Button("change current", visible=False)
                    # working_frame = []
                    output_result = gr.Image(label="current working mask ref")
                with gr.Group():
                    with gr.Row():
                        vis_frame_type = gr.Radio(label="Propagation level", choices=["check", "render"], value="check", scale=2)
                        propagate_btn = gr.Button("Propagate", scale=2)

                reset_prpgt_brn = gr.Button("Reset", visible=False)
                output_propagated = gr.Gallery(label="Propagated Mask samples gallery", columns=4, visible=False)
                output_video = gr.Video(visible=False)
                # output_result_mask = gr.Image()
    
    

    # When new video is uploaded
    video_in.upload(
        fn = preprocess_video_in, 
        inputs = [video_in], 
        outputs = [
            first_frame_path, 
            tracking_points, # update Tracking Points in the gr.State([]) object
            trackings_input_label, # update Tracking Labels in the gr.State([]) object
            input_first_frame_image, # hidden component used as ref when clearing points
            points_map, # Image component where we add new tracking points
            video_frames_dir, # Array where frames from video_in are deep stored
            scanned_frames, # Scanned frames by SAM2
            stored_inference_state, # Sam2 inference state
            stored_frame_names, # 
            video_in_drawer, # Accordion to hide uploaded video player
        ],
        queue = False
    )
    
    video_in.change(
        fn = preprocess_video_in, 
        inputs = [video_in], 
        outputs = [
            first_frame_path, 
            tracking_points, # update Tracking Points in the gr.State([]) object
            trackings_input_label, # update Tracking Labels in the gr.State([]) object
            input_first_frame_image, # hidden component used as ref when clearing points
            points_map, # Image component where we add new tracking points
            video_frames_dir, # Array where frames from video_in are deep stored
            scanned_frames, # Scanned frames by SAM2
            stored_inference_state, # Sam2 inference state
            stored_frame_names, # 
            video_in_drawer, # Accordion to hide uploaded video player
        ],
        queue = False
    )

    
    # triggered when we click on image to add new points
    points_map.select(
        fn = get_point, 
        inputs = [
            point_type, # "include" or "exclude"
            tracking_points, # get tracking_points values
            trackings_input_label, # get tracking label values
            input_first_frame_image, # gr.State() first frame path
        ], 
        outputs = [
            tracking_points, # updated with new points
            trackings_input_label, # updated with corresponding labels
            points_map, # updated image with points
        ], 
        queue = False
    )

    # Clear every points clicked and added to the map
    clear_points_btn.click(
        fn = clear_points,
        inputs = input_first_frame_image, # we get the untouched hidden image
        outputs = [
            first_frame_path, 
            tracking_points, 
            trackings_input_label, 
            points_map, 
            #stored_inference_state,
        ],
        queue=False
    )

    
    # change_current.click(
    #     fn = switch_working_frame,
    #     inputs = [working_frame, scanned_frames, video_frames_dir],
    #     outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map],
    #     queue=False
    # )
    

    submit_btn.click(
        fn = get_mask_sam_process,
        inputs = [
            stored_inference_state,
            input_first_frame_image, 
            checkpoint, 
            tracking_points, 
            trackings_input_label, 
            video_frames_dir, 
            scanned_frames, 
            working_frame,
            available_frames_to_check,
        ],
        outputs = [
            output_result, 
            stored_frame_names, 
            loaded_predictor,
            stored_inference_state,
            working_frame,
        ],
        queue=False
    )

    reset_prpgt_brn.click(
        fn = reset_propagation,
        inputs = [first_frame_path, loaded_predictor, stored_inference_state],
        outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn],
        queue=False
    )


    propagate_btn.click(
        fn = update_ui,
        inputs = [vis_frame_type],
        outputs = [output_propagated, output_video],
        queue=False
    ).then(
        fn = propagate_to_all,
        inputs = [video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame],
        outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn]
    )

    gr.Examples(vid_l, video_in)

demo.launch(share = True)