Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -240,11 +240,7 @@ def get_mask_sam_process(
|
|
| 240 |
print("MODEL LOADED")
|
| 241 |
|
| 242 |
# set predictor
|
| 243 |
-
|
| 244 |
-
inference_state["device"] = 'cuda'
|
| 245 |
-
# predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
| 246 |
-
else:
|
| 247 |
-
inference_state["device"] = 'cpu'
|
| 248 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
|
| 249 |
|
| 250 |
print("PREDICTOR READY")
|
|
@@ -267,6 +263,13 @@ def get_mask_sam_process(
|
|
| 267 |
else:
|
| 268 |
inference_state = stored_inference_state
|
| 269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
# segment and track one object
|
| 271 |
# predictor.reset_state(inference_state) # if any previous tracking, reset
|
| 272 |
|
|
@@ -329,6 +332,9 @@ def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_
|
|
| 329 |
#### PROPAGATION ####
|
| 330 |
sam2_checkpoint, model_cfg = load_model(checkpoint)
|
| 331 |
# set predictor
|
|
|
|
|
|
|
|
|
|
| 332 |
if torch.cuda.is_available():
|
| 333 |
inference_state["device"] = 'cuda'
|
| 334 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
|
@@ -337,7 +343,7 @@ def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_
|
|
| 337 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
|
| 338 |
|
| 339 |
|
| 340 |
-
|
| 341 |
frame_names = stored_frame_names
|
| 342 |
video_dir = video_frames_dir
|
| 343 |
|
|
|
|
| 240 |
print("MODEL LOADED")
|
| 241 |
|
| 242 |
# set predictor
|
| 243 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
|
| 245 |
|
| 246 |
print("PREDICTOR READY")
|
|
|
|
| 263 |
else:
|
| 264 |
inference_state = stored_inference_state
|
| 265 |
|
| 266 |
+
|
| 267 |
+
if torch.cuda.is_available():
|
| 268 |
+
inference_state["device"] = 'cuda'
|
| 269 |
+
# predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
| 270 |
+
else:
|
| 271 |
+
inference_state["device"] = 'cpu'
|
| 272 |
+
|
| 273 |
# segment and track one object
|
| 274 |
# predictor.reset_state(inference_state) # if any previous tracking, reset
|
| 275 |
|
|
|
|
| 332 |
#### PROPAGATION ####
|
| 333 |
sam2_checkpoint, model_cfg = load_model(checkpoint)
|
| 334 |
# set predictor
|
| 335 |
+
|
| 336 |
+
inference_state = stored_inference_state
|
| 337 |
+
|
| 338 |
if torch.cuda.is_available():
|
| 339 |
inference_state["device"] = 'cuda'
|
| 340 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
|
|
|
| 343 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
|
| 344 |
|
| 345 |
|
| 346 |
+
|
| 347 |
frame_names = stored_frame_names
|
| 348 |
video_dir = video_frames_dir
|
| 349 |
|