Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -240,11 +240,7 @@ def get_mask_sam_process(
|
|
240 |
print("MODEL LOADED")
|
241 |
|
242 |
# set predictor
|
243 |
-
|
244 |
-
inference_state["device"] = 'cuda'
|
245 |
-
# predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
246 |
-
else:
|
247 |
-
inference_state["device"] = 'cpu'
|
248 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
|
249 |
|
250 |
print("PREDICTOR READY")
|
@@ -267,6 +263,13 @@ def get_mask_sam_process(
|
|
267 |
else:
|
268 |
inference_state = stored_inference_state
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
# segment and track one object
|
271 |
# predictor.reset_state(inference_state) # if any previous tracking, reset
|
272 |
|
@@ -329,6 +332,9 @@ def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_
|
|
329 |
#### PROPAGATION ####
|
330 |
sam2_checkpoint, model_cfg = load_model(checkpoint)
|
331 |
# set predictor
|
|
|
|
|
|
|
332 |
if torch.cuda.is_available():
|
333 |
inference_state["device"] = 'cuda'
|
334 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
@@ -337,7 +343,7 @@ def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_
|
|
337 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
|
338 |
|
339 |
|
340 |
-
|
341 |
frame_names = stored_frame_names
|
342 |
video_dir = video_frames_dir
|
343 |
|
|
|
240 |
print("MODEL LOADED")
|
241 |
|
242 |
# set predictor
|
243 |
+
|
|
|
|
|
|
|
|
|
244 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
|
245 |
|
246 |
print("PREDICTOR READY")
|
|
|
263 |
else:
|
264 |
inference_state = stored_inference_state
|
265 |
|
266 |
+
|
267 |
+
if torch.cuda.is_available():
|
268 |
+
inference_state["device"] = 'cuda'
|
269 |
+
# predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
270 |
+
else:
|
271 |
+
inference_state["device"] = 'cpu'
|
272 |
+
|
273 |
# segment and track one object
|
274 |
# predictor.reset_state(inference_state) # if any previous tracking, reset
|
275 |
|
|
|
332 |
#### PROPAGATION ####
|
333 |
sam2_checkpoint, model_cfg = load_model(checkpoint)
|
334 |
# set predictor
|
335 |
+
|
336 |
+
inference_state = stored_inference_state
|
337 |
+
|
338 |
if torch.cuda.is_available():
|
339 |
inference_state["device"] = 'cuda'
|
340 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
|
|
343 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
|
344 |
|
345 |
|
346 |
+
|
347 |
frame_names = stored_frame_names
|
348 |
video_dir = video_frames_dir
|
349 |
|