Light-A-Video / lav_paint.py
fffiloni's picture
Migrated from GitHub
052f125 verified
import os
import torch
import imageio
import argparse
from types import MethodType
import safetensors.torch as sf
import torch.nn.functional as F
from omegaconf import OmegaConf
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import MotionAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from torch.hub import download_url_to_file
from src.ic_light import BGSource
from src.ic_light import Relighter
from src.animatediff_inpaint_pipe import AnimateDiffVideoToVideoPipeline
from src.ic_light_pipe import StableDiffusionImg2ImgPipeline
from utils.tools import read_video, read_mask,set_all_seed, get_fg_video
def main(args):
config = OmegaConf.load(args.config)
device = torch.device('cuda')
adopted_dtype = torch.float16
set_all_seed(42)
## vdm model
adapter = MotionAdapter.from_pretrained(args.motion_adapter_model)
## pipeline
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(args.sd_model, motion_adapter=adapter)
eul_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
args.sd_model,
subfolder="scheduler",
beta_schedule="linear",
)
pipe.scheduler = eul_scheduler
pipe.enable_vae_slicing()
pipe = pipe.to(device=device, dtype=adopted_dtype)
pipe.vae.requires_grad_(False)
pipe.unet.requires_grad_(False)
## ic-light model
tokenizer = CLIPTokenizer.from_pretrained(args.sd_model, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.sd_model, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.sd_model, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.sd_model, subfolder="unet")
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_() #torch.Size([320, 8, 3, 3])
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
## ic-light model loader
if not os.path.exists(args.ic_light_model):
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors',
dst=args.ic_light_model)
sd_offset = sf.load_file(args.ic_light_model)
sd_origin = unet.state_dict()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged
text_encoder = text_encoder.to(device=device, dtype=adopted_dtype)
vae = vae.to(device=device, dtype=adopted_dtype)
unet = unet.to(device=device, dtype=adopted_dtype)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# Consistent light attention
@torch.inference_mode()
def custom_forward_CLA(self,
hidden_states,
gamma=config.get("gamma", 0.5),
encoder_hidden_states=None,
attention_mask=None,
cross_attention_kwargs=None
):
batch_size, sequence_length, channel = hidden_states.shape
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // self.heads
query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
shape = query.shape
# addition key and value
mean_key = key.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
mean_value = value.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
mean_key = mean_key.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
mean_value = mean_value.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
add_hidden_state = F.scaled_dot_product_attention(query, mean_key, mean_value, attn_mask=None, dropout_p=0.0, is_causal=False)
# mix
hidden_states = (1-gamma)*hidden_states + gamma*add_hidden_state
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
hidden_states = self.to_out[0](hidden_states)
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
### attention
@torch.inference_mode()
def prep_unet_self_attention(unet):
for name, module in unet.named_modules():
module_name = type(module).__name__
name_split_list = name.split(".")
cond_1 = name_split_list[0] in "up_blocks"
cond_2 = name_split_list[-1] in ('attn1')
if "Attention" in module_name and cond_1 and cond_2:
cond_3 = name_split_list[1]
if cond_3 not in "3":
module.forward = MethodType(custom_forward_CLA, module)
return unet
## consistency light attention
unet = prep_unet_self_attention(unet)
## ic-light-scheduler
ic_light_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
ic_light_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=ic_light_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
ic_light_pipe = ic_light_pipe.to(device)
############################# params ######################################
strength = config.get("strength", 0.5)
num_step = config.get("num_step", 50)
text_guide_scale = config.get("text_guide_scale", 4)
seed = config.get("seed")
image_width = config.get("width", 512)
image_height = config.get("height", 512)
n_prompt = config.get("n_prompt", "")
inpaint_prompt = config.get("inpaint_prompt", "")
relight_prompt = config.get("relight_prompt", "")
video_path = config.get("video_path", "")
bg_source = BGSource[config.get("bg_source")]
save_path = config.get("save_path")
############################## infer #####################################
generator = torch.manual_seed(seed)
video_name = os.path.basename(video_path)
video_list, video_name = read_video(video_path, image_width, image_height)
mask_folder = os.path.join("masks_animatediff", video_name.split('.')[-2])
mask_list = read_mask(mask_folder)
print("################## begin ##################")
## get foreground video
fg_video_tensor = get_fg_video(video_list, mask_list, device, adopted_dtype) ## torch.Size([16, 3, 512, 512])
with torch.no_grad():
relighter = Relighter(
pipeline=ic_light_pipe,
relight_prompt=relight_prompt,
bg_source=bg_source,
generator=generator,
)
vdm_init_latent = relighter(fg_video_tensor)
## infer
num_inference_steps = num_step
output = pipe(
ic_light_pipe=ic_light_pipe,
relight_prompt=relight_prompt,
bg_source=bg_source,
mask=mask_list,
vdm_init_latent=vdm_init_latent,
video=video_list,
prompt=inpaint_prompt,
strength=strength,
negative_prompt=n_prompt,
guidance_scale=text_guide_scale,
num_inference_steps=num_inference_steps,
height=image_height,
width=image_width,
generator=generator,
)
frames = output.frames[0]
results_path = f"{save_path}/inpaint_{video_name}"
imageio.mimwrite(results_path, frames, fps=8)
print(f"relight with bg generation! prompt:{relight_prompt}, light:{bg_source.value}, save in {results_path}.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sd_model", type=str, default="stablediffusionapi/realistic-vision-v51")
parser.add_argument("--motion_adapter_model", type=str, default="guoyww/animatediff-motion-adapter-v1-5-3")
parser.add_argument("--ic_light_model", type=str, default="./models/iclight_sd15_fc.safetensors")
parser.add_argument("--config", type=str, default="configs/relight_inpaint/car.yaml", help="the config file for each sample.")
args = parser.parse_args()
main(args)