Spaces:
Running
Running
import os | |
import torch | |
import imageio | |
import argparse | |
from types import MethodType | |
import safetensors.torch as sf | |
import torch.nn.functional as F | |
from omegaconf import OmegaConf | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import MotionAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL | |
from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
from torch.hub import download_url_to_file | |
from src.ic_light import BGSource | |
from src.ic_light import Relighter | |
from src.animatediff_inpaint_pipe import AnimateDiffVideoToVideoPipeline | |
from src.ic_light_pipe import StableDiffusionImg2ImgPipeline | |
from utils.tools import read_video, read_mask,set_all_seed, get_fg_video | |
def main(args): | |
config = OmegaConf.load(args.config) | |
device = torch.device('cuda') | |
adopted_dtype = torch.float16 | |
set_all_seed(42) | |
## vdm model | |
adapter = MotionAdapter.from_pretrained(args.motion_adapter_model) | |
## pipeline | |
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(args.sd_model, motion_adapter=adapter) | |
eul_scheduler = EulerAncestralDiscreteScheduler.from_pretrained( | |
args.sd_model, | |
subfolder="scheduler", | |
beta_schedule="linear", | |
) | |
pipe.scheduler = eul_scheduler | |
pipe.enable_vae_slicing() | |
pipe = pipe.to(device=device, dtype=adopted_dtype) | |
pipe.vae.requires_grad_(False) | |
pipe.unet.requires_grad_(False) | |
## ic-light model | |
tokenizer = CLIPTokenizer.from_pretrained(args.sd_model, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(args.sd_model, subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained(args.sd_model, subfolder="vae") | |
unet = UNet2DConditionModel.from_pretrained(args.sd_model, subfolder="unet") | |
with torch.no_grad(): | |
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding) | |
new_conv_in.weight.zero_() #torch.Size([320, 8, 3, 3]) | |
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) | |
new_conv_in.bias = unet.conv_in.bias | |
unet.conv_in = new_conv_in | |
unet_original_forward = unet.forward | |
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs): | |
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample) | |
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) | |
new_sample = torch.cat([sample, c_concat], dim=1) | |
kwargs['cross_attention_kwargs'] = {} | |
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs) | |
unet.forward = hooked_unet_forward | |
## ic-light model loader | |
if not os.path.exists(args.ic_light_model): | |
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors', | |
dst=args.ic_light_model) | |
sd_offset = sf.load_file(args.ic_light_model) | |
sd_origin = unet.state_dict() | |
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()} | |
unet.load_state_dict(sd_merged, strict=True) | |
del sd_offset, sd_origin, sd_merged | |
text_encoder = text_encoder.to(device=device, dtype=adopted_dtype) | |
vae = vae.to(device=device, dtype=adopted_dtype) | |
unet = unet.to(device=device, dtype=adopted_dtype) | |
unet.set_attn_processor(AttnProcessor2_0()) | |
vae.set_attn_processor(AttnProcessor2_0()) | |
# Consistent light attention | |
def custom_forward_CLA(self, | |
hidden_states, | |
gamma=config.get("gamma", 0.5), | |
encoder_hidden_states=None, | |
attention_mask=None, | |
cross_attention_kwargs=None | |
): | |
batch_size, sequence_length, channel = hidden_states.shape | |
residual = hidden_states | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
query = self.to_q(hidden_states) | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // self.heads | |
query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2) | |
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False) | |
shape = query.shape | |
# addition key and value | |
mean_key = key.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True) | |
mean_value = value.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True) | |
mean_key = mean_key.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3]) | |
mean_value = mean_value.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3]) | |
add_hidden_state = F.scaled_dot_product_attention(query, mean_key, mean_value, attn_mask=None, dropout_p=0.0, is_causal=False) | |
# mix | |
hidden_states = (1-gamma)*hidden_states + gamma*add_hidden_state | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = self.to_out[0](hidden_states) | |
hidden_states = self.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if self.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / self.rescale_output_factor | |
return hidden_states | |
### attention | |
def prep_unet_self_attention(unet): | |
for name, module in unet.named_modules(): | |
module_name = type(module).__name__ | |
name_split_list = name.split(".") | |
cond_1 = name_split_list[0] in "up_blocks" | |
cond_2 = name_split_list[-1] in ('attn1') | |
if "Attention" in module_name and cond_1 and cond_2: | |
cond_3 = name_split_list[1] | |
if cond_3 not in "3": | |
module.forward = MethodType(custom_forward_CLA, module) | |
return unet | |
## consistency light attention | |
unet = prep_unet_self_attention(unet) | |
## ic-light-scheduler | |
ic_light_scheduler = DPMSolverMultistepScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
algorithm_type="sde-dpmsolver++", | |
use_karras_sigmas=True, | |
steps_offset=1 | |
) | |
ic_light_pipe = StableDiffusionImg2ImgPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=ic_light_scheduler, | |
safety_checker=None, | |
requires_safety_checker=False, | |
feature_extractor=None, | |
image_encoder=None | |
) | |
ic_light_pipe = ic_light_pipe.to(device) | |
############################# params ###################################### | |
strength = config.get("strength", 0.5) | |
num_step = config.get("num_step", 50) | |
text_guide_scale = config.get("text_guide_scale", 4) | |
seed = config.get("seed") | |
image_width = config.get("width", 512) | |
image_height = config.get("height", 512) | |
n_prompt = config.get("n_prompt", "") | |
inpaint_prompt = config.get("inpaint_prompt", "") | |
relight_prompt = config.get("relight_prompt", "") | |
video_path = config.get("video_path", "") | |
bg_source = BGSource[config.get("bg_source")] | |
save_path = config.get("save_path") | |
############################## infer ##################################### | |
generator = torch.manual_seed(seed) | |
video_name = os.path.basename(video_path) | |
video_list, video_name = read_video(video_path, image_width, image_height) | |
mask_folder = os.path.join("masks_animatediff", video_name.split('.')[-2]) | |
mask_list = read_mask(mask_folder) | |
print("################## begin ##################") | |
## get foreground video | |
fg_video_tensor = get_fg_video(video_list, mask_list, device, adopted_dtype) ## torch.Size([16, 3, 512, 512]) | |
with torch.no_grad(): | |
relighter = Relighter( | |
pipeline=ic_light_pipe, | |
relight_prompt=relight_prompt, | |
bg_source=bg_source, | |
generator=generator, | |
) | |
vdm_init_latent = relighter(fg_video_tensor) | |
## infer | |
num_inference_steps = num_step | |
output = pipe( | |
ic_light_pipe=ic_light_pipe, | |
relight_prompt=relight_prompt, | |
bg_source=bg_source, | |
mask=mask_list, | |
vdm_init_latent=vdm_init_latent, | |
video=video_list, | |
prompt=inpaint_prompt, | |
strength=strength, | |
negative_prompt=n_prompt, | |
guidance_scale=text_guide_scale, | |
num_inference_steps=num_inference_steps, | |
height=image_height, | |
width=image_width, | |
generator=generator, | |
) | |
frames = output.frames[0] | |
results_path = f"{save_path}/inpaint_{video_name}" | |
imageio.mimwrite(results_path, frames, fps=8) | |
print(f"relight with bg generation! prompt:{relight_prompt}, light:{bg_source.value}, save in {results_path}.") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--sd_model", type=str, default="stablediffusionapi/realistic-vision-v51") | |
parser.add_argument("--motion_adapter_model", type=str, default="guoyww/animatediff-motion-adapter-v1-5-3") | |
parser.add_argument("--ic_light_model", type=str, default="./models/iclight_sd15_fc.safetensors") | |
parser.add_argument("--config", type=str, default="configs/relight_inpaint/car.yaml", help="the config file for each sample.") | |
args = parser.parse_args() | |
main(args) |