File size: 10,913 Bytes
052f125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import torch
import imageio
import argparse
from types import MethodType
import safetensors.torch as sf
import torch.nn.functional as F
from omegaconf import OmegaConf
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import MotionAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from torch.hub import download_url_to_file

from src.ic_light import BGSource
from src.ic_light import Relighter
from src.animatediff_inpaint_pipe import AnimateDiffVideoToVideoPipeline
from src.ic_light_pipe import StableDiffusionImg2ImgPipeline
from utils.tools import read_video, read_mask,set_all_seed, get_fg_video

def main(args):
    
    config  = OmegaConf.load(args.config)
    device = torch.device('cuda')
    adopted_dtype = torch.float16
    set_all_seed(42)
    
    ## vdm model
    adapter = MotionAdapter.from_pretrained(args.motion_adapter_model)

    ## pipeline
    pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(args.sd_model, motion_adapter=adapter)
    eul_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
        args.sd_model,
        subfolder="scheduler",
        beta_schedule="linear",
    )

    pipe.scheduler = eul_scheduler
    pipe.enable_vae_slicing()
    pipe = pipe.to(device=device, dtype=adopted_dtype)
    pipe.vae.requires_grad_(False)
    pipe.unet.requires_grad_(False)

    ## ic-light model
    tokenizer = CLIPTokenizer.from_pretrained(args.sd_model, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(args.sd_model, subfolder="text_encoder")
    vae = AutoencoderKL.from_pretrained(args.sd_model, subfolder="vae")
    unet = UNet2DConditionModel.from_pretrained(args.sd_model, subfolder="unet")
    with torch.no_grad():
        new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
        new_conv_in.weight.zero_() #torch.Size([320, 8, 3, 3])
        new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
        new_conv_in.bias = unet.conv_in.bias
        unet.conv_in = new_conv_in
    unet_original_forward = unet.forward

    def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
        
        c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
        c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
        new_sample = torch.cat([sample, c_concat], dim=1)
        kwargs['cross_attention_kwargs'] = {}
        return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
    unet.forward = hooked_unet_forward

    ## ic-light model loader
    if not os.path.exists(args.ic_light_model):
        download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors', 
                             dst=args.ic_light_model)
    sd_offset = sf.load_file(args.ic_light_model)
    sd_origin = unet.state_dict()
    sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
    unet.load_state_dict(sd_merged, strict=True)
    del sd_offset, sd_origin, sd_merged
    text_encoder = text_encoder.to(device=device, dtype=adopted_dtype)
    vae = vae.to(device=device, dtype=adopted_dtype)
    unet = unet.to(device=device, dtype=adopted_dtype)
    unet.set_attn_processor(AttnProcessor2_0())
    vae.set_attn_processor(AttnProcessor2_0())

    # Consistent light attention
    @torch.inference_mode()
    def custom_forward_CLA(self, 
                        hidden_states, 
                        gamma=config.get("gamma", 0.5),
                        encoder_hidden_states=None,
                        attention_mask=None, 
                        cross_attention_kwargs=None
                        ):

        batch_size, sequence_length, channel = hidden_states.shape
        
        residual = hidden_states
        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        if attention_mask is not None:
            if attention_mask.shape[-1] != query.shape[1]:
                target_length = query.shape[1]
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
                attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
        if self.group_norm is not None:
            hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
        if encoder_hidden_states is None: 
            encoder_hidden_states = hidden_states

        query = self.to_q(hidden_states) 
        key = self.to_k(encoder_hidden_states)   
        value = self.to_v(encoder_hidden_states) 
        inner_dim = key.shape[-1]
        head_dim = inner_dim // self.heads
        query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)

        hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
        shape = query.shape
        
        # addition key and value
        mean_key = key.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
        mean_value = value.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
        mean_key = mean_key.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
        mean_value = mean_value.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
        add_hidden_state = F.scaled_dot_product_attention(query, mean_key, mean_value, attn_mask=None, dropout_p=0.0, is_causal=False)
        
        # mix
        hidden_states = (1-gamma)*hidden_states + gamma*add_hidden_state
        
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = self.to_out[0](hidden_states)
        hidden_states = self.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if self.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / self.rescale_output_factor
        return hidden_states

    ### attention
    @torch.inference_mode()
    def prep_unet_self_attention(unet):
        for name, module in unet.named_modules(): 
            module_name = type(module).__name__
            
            name_split_list = name.split(".")
            cond_1 = name_split_list[0] in "up_blocks"
            cond_2 = name_split_list[-1] in ('attn1')
            
            if "Attention" in module_name and cond_1 and cond_2:
                cond_3 = name_split_list[1] 
                if cond_3 not in "3":
                    module.forward = MethodType(custom_forward_CLA, module)

        return unet

    ## consistency light attention
    unet = prep_unet_self_attention(unet)

    ## ic-light-scheduler
    ic_light_scheduler = DPMSolverMultistepScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        algorithm_type="sde-dpmsolver++",
        use_karras_sigmas=True,
        steps_offset=1
    )
    ic_light_pipe = StableDiffusionImg2ImgPipeline(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=ic_light_scheduler,
        safety_checker=None,
        requires_safety_checker=False,
        feature_extractor=None,
        image_encoder=None
    )
    ic_light_pipe = ic_light_pipe.to(device)
    
    #############################  params  ######################################
    strength = config.get("strength", 0.5)
    num_step = config.get("num_step", 50)
    text_guide_scale = config.get("text_guide_scale", 4)
    seed = config.get("seed")
    image_width = config.get("width", 512)
    image_height = config.get("height", 512)
    n_prompt = config.get("n_prompt", "")
    inpaint_prompt = config.get("inpaint_prompt", "")
    relight_prompt = config.get("relight_prompt", "")
    video_path = config.get("video_path", "")
    bg_source = BGSource[config.get("bg_source")]
    save_path = config.get("save_path")

    ##############################  infer  #####################################
    generator = torch.manual_seed(seed)
    video_name = os.path.basename(video_path)
    video_list, video_name = read_video(video_path, image_width, image_height)
    mask_folder = os.path.join("masks_animatediff", video_name.split('.')[-2])
    mask_list = read_mask(mask_folder)

    print("################## begin ##################")
    ## get foreground video
    fg_video_tensor = get_fg_video(video_list, mask_list, device, adopted_dtype) ## torch.Size([16, 3, 512, 512])

    with torch.no_grad():
        relighter = Relighter(
            pipeline=ic_light_pipe,
            relight_prompt=relight_prompt,
            bg_source=bg_source, 
            generator=generator,
            )
        vdm_init_latent = relighter(fg_video_tensor)

        ## infer
        num_inference_steps = num_step
        output = pipe(
            ic_light_pipe=ic_light_pipe,
            relight_prompt=relight_prompt,
            bg_source=bg_source,
            mask=mask_list,
            vdm_init_latent=vdm_init_latent,
            video=video_list,
            prompt=inpaint_prompt,
            strength=strength,
            negative_prompt=n_prompt,
            guidance_scale=text_guide_scale,
            num_inference_steps=num_inference_steps,
            height=image_height,
            width=image_width,
            generator=generator,
        )

        frames = output.frames[0]
        results_path = f"{save_path}/inpaint_{video_name}"
        imageio.mimwrite(results_path, frames, fps=8)
        print(f"relight with bg generation! prompt:{relight_prompt}, light:{bg_source.value}, save in {results_path}.")
    
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    
    parser.add_argument("--sd_model", type=str, default="stablediffusionapi/realistic-vision-v51")
    parser.add_argument("--motion_adapter_model", type=str, default="guoyww/animatediff-motion-adapter-v1-5-3")
    parser.add_argument("--ic_light_model", type=str, default="./models/iclight_sd15_fc.safetensors")
    
    parser.add_argument("--config", type=str, default="configs/relight_inpaint/car.yaml", help="the config file for each sample.")
    
    args = parser.parse_args()
    main(args)