Spaces:
Running
Running
File size: 16,512 Bytes
ca441ab aaf6d71 ca441ab 180e34e ca441ab f9aae74 ca441ab 180e34e ca441ab aaf6d71 ca441ab 180e34e ca441ab af5a9e7 681bc79 af5a9e7 aaf6d71 af5a9e7 aaf6d71 af5a9e7 aaf6d71 681bc79 aaf6d71 681bc79 aaf6d71 ca441ab aaf6d71 ca441ab ce9ceb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import yaml
import tempfile
import gradio as gr
import os
import shutil
import torch
import imageio
import argparse
from types import MethodType
import safetensors.torch as sf
import torch.nn.functional as F
from omegaconf import OmegaConf
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import MotionAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from torch.hub import download_url_to_file
from src.ic_light import BGSource
from src.animatediff_pipe import AnimateDiffVideoToVideoPipeline
from src.ic_light_pipe import StableDiffusionImg2ImgPipeline
from utils.tools import read_video, set_all_seed
from huggingface_hub import snapshot_download, hf_hub_download
hf_hub_download(
repo_id='lllyasviel/ic-light',
filename='iclight_sd15_fc.safetensors',
local_dir='./models'
)
snapshot_download(
repo_id="stablediffusionapi/realistic-vision-v51",
local_dir="./models/stablediffusionapi/realistic-vision-v51"
)
snapshot_download(
repo_id="guoyww/animatediff-motion-adapter-v1-5-3",
local_dir="./models/guoyww/animatediff-motion-adapter-v1-5-3"
)
def main(args):
config = OmegaConf.load(args.config)
device = torch.device('cuda')
adopted_dtype = torch.float16
set_all_seed(42)
## vdm model
adapter = MotionAdapter.from_pretrained(args.motion_adapter_model)
## pipeline
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(args.sd_model, motion_adapter=adapter)
eul_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
args.sd_model,
subfolder="scheduler",
beta_schedule="linear",
)
pipe.scheduler = eul_scheduler
pipe.enable_vae_slicing()
pipe = pipe.to(device=device, dtype=adopted_dtype)
pipe.vae.requires_grad_(False)
pipe.unet.requires_grad_(False)
## ic-light model
tokenizer = CLIPTokenizer.from_pretrained(args.sd_model, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.sd_model, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.sd_model, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.sd_model, subfolder="unet")
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_() #torch.Size([320, 8, 3, 3])
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
## ic-light model loader
if not os.path.exists(args.ic_light_model):
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors',
dst=args.ic_light_model)
sd_offset = sf.load_file(args.ic_light_model)
sd_origin = unet.state_dict()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged
text_encoder = text_encoder.to(device=device, dtype=adopted_dtype)
vae = vae.to(device=device, dtype=adopted_dtype)
unet = unet.to(device=device, dtype=adopted_dtype)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# Consistent light attention
@torch.inference_mode()
def custom_forward_CLA(self,
hidden_states,
gamma=config.get("gamma", 0.5),
encoder_hidden_states=None,
attention_mask=None,
cross_attention_kwargs=None
):
batch_size, sequence_length, channel = hidden_states.shape
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // self.heads
query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
shape = query.shape
# addition key and value
mean_key = key.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
mean_value = value.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
mean_key = mean_key.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
mean_value = mean_value.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
add_hidden_state = F.scaled_dot_product_attention(query, mean_key, mean_value, attn_mask=None, dropout_p=0.0, is_causal=False)
# mix
hidden_states = (1-gamma)*hidden_states + gamma*add_hidden_state
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
hidden_states = self.to_out[0](hidden_states)
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
### attention
@torch.inference_mode()
def prep_unet_self_attention(unet):
for name, module in unet.named_modules():
module_name = type(module).__name__
name_split_list = name.split(".")
cond_1 = name_split_list[0] in "up_blocks"
cond_2 = name_split_list[-1] in ('attn1')
if "Attention" in module_name and cond_1 and cond_2:
cond_3 = name_split_list[1]
if cond_3 not in "3":
module.forward = MethodType(custom_forward_CLA, module)
return unet
## consistency light attention
unet = prep_unet_self_attention(unet)
## ic-light-scheduler
ic_light_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
ic_light_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=ic_light_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
ic_light_pipe = ic_light_pipe.to(device)
############################# params ######################################
strength = config.get("strength", 0.5)
num_step = config.get("num_step", 25)
text_guide_scale = config.get("text_guide_scale", 2)
seed = config.get("seed")
image_width = config.get("width", 512)
image_height = config.get("height", 512)
n_prompt = config.get("n_prompt", "")
relight_prompt = config.get("relight_prompt", "")
video_path = config.get("video_path", "")
bg_source = BGSource[config.get("bg_source")]
save_path = config.get("save_path")
############################## infer #####################################
generator = torch.manual_seed(seed)
video_name = os.path.basename(video_path)
video_list, video_name = read_video(video_path, image_width, image_height)
print("################## begin ##################")
with torch.no_grad():
num_inference_steps = int(round(num_step / strength))
output = pipe(
ic_light_pipe=ic_light_pipe,
relight_prompt=relight_prompt,
bg_source=bg_source,
video=video_list,
prompt=relight_prompt,
strength=strength,
negative_prompt=n_prompt,
guidance_scale=text_guide_scale,
num_inference_steps=num_inference_steps,
height=image_height,
width=image_width,
generator=generator,
)
frames = output.frames[0]
results_path = f"{save_path}/relight_{video_name}"
imageio.mimwrite(results_path, frames, fps=8)
print(f"relight with bg generation! prompt:{relight_prompt}, light:{bg_source.value}, save in {results_path}.")
return results_path
def infer(n_prompt, relight_prompt, video_path, bg_source,
width, height, strength, gamma, num_step, text_guide_scale, seed, progress=gr.Progress(track_tqdm=True)):
save_path = "./output"
# Ensure output folder is empty
if os.path.exists(save_path):
shutil.rmtree(save_path)
os.makedirs(save_path, exist_ok=True)
config_data = {
"n_prompt": n_prompt,
"relight_prompt": relight_prompt,
"video_path": video_path,
"bg_source": bg_source,
"save_path": save_path,
"width": width,
"height": height,
"strength": strength,
"gamma": gamma,
"num_step": num_step,
"text_guide_scale": text_guide_scale,
"seed": seed
}
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml")
with open(temp_file.name, 'w') as file:
yaml.dump(config_data, file, default_flow_style=False)
config_path = temp_file.name
class Args:
def __init__(self):
self.sd_model = "./models/stablediffusionapi/realistic-vision-v51"
self.motion_adapter_model = "./models/guoyww/animatediff-motion-adapter-v1-5-3"
self.ic_light_model = "./models/iclight_sd15_fc.safetensors"
self.config = config_path
args = Args()
results_path= main(args)
os.remove(config_path)
return results_path
css="""
div#col-container{
margin: 0 auto;
max-width: 1200px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Light-A-Video")
gr.Markdown("Training-free Video Relighting via Progressive Light Fusion")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/bcmi/Light-A-Video">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://bujiazi.github.io/light-a-video.github.io/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2502.08590">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/Light-A-Video?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
video_path = gr.Video(label="Video Path")
with gr.Row():
relight_prompt = gr.Textbox(label="Relight Prompt", scale=3)
bg_source = gr.Dropdown(["NONE", "LEFT", "RIGHT", "BOTTOM", "TOP"], label="Background Source", scale=1)
with gr.Accordion(label="Advanced Settings", open=False):
n_prompt = gr.Textbox(label="Negative Prompt", value="bad quality, worse quality")
with gr.Row():
width = gr.Number(label="Width", value=512)
height = gr.Number(label="Height", value=512)
with gr.Row():
strength = gr.Slider(minimum=0.0, maximum=1.0, label="Strength", value=0.5)
gamma = gr.Slider(minimum=0.0, maximum=1.0, label="Gamma", value=0.5)
with gr.Row():
num_step = gr.Number(label="Number of Steps", value=25)
text_guide_scale = gr.Number(label="Text Guide Scale", value=2)
seed = gr.Number(label="Seed", value=2060)
submit = gr.Button("Run")
gr.Examples(
examples=[
["./input_animatediff/bear.mp4", "a bear walking on the rock, nature lighting, key light", "TOP"],
["./input_animatediff/boat.mp4", "a boat floating on the sea, sunset", "TOP"],
["./input_animatediff/car.mp4", "a car driving on the street, neon light", "RIGHT"],
["./input_animatediff/cat.mp4", "a cat, red and blue neon light", "LEFT"],
["./input_animatediff/cow.mp4", "a cow drinking water in the river, sunset", "RIGHT"],
["./input_animatediff/flowers.mp4", "A basket of flowers, sunshine, hard light", "LEFT"],
["./input_animatediff/fox.mp4", "a fox, sunlight filtering through trees, dappled light", "LEFT"],
["./input_animatediff/girl.mp4", "a girl, magic lit, sci-fi RGB glowing, key lighting", "BOTTOM"],
["./input_animatediff/girl2.mp4", "an anime girl, neon light", "RIGHT"],
["./input_animatediff/juice.mp4", "Pour juice into a glass, magic golden lit", "RIGHT"],
["./input_animatediff/man2.mp4", "handsome man with glasses, shadow from window, sunshine", "RIGHT"],
["./input_animatediff/man4.mp4", "handsome man with glasses, sunlight through the blinds", "LEFT"],
["./input_animatediff/plane.mp4", "a plane on the runway, bottom neon light", "BOTTOM"],
["./input_animatediff/toy.mp4", "a maneki-neko toy, cozy bedroom illumination", "RIGHT"],
["./input_animatediff/woman.mp4", "a woman with curly hair, natural lighting, warm atmosphere", "LEFT"],
],
inputs=[video_path, relight_prompt, bg_source],
examples_per_page=3
)
with gr.Column():
output = gr.Video(label="Results Path")
submit.click(
fn=infer,
inputs=[n_prompt, relight_prompt, video_path, bg_source,
width, height, strength, gamma, num_step, text_guide_scale, seed],
outputs=[output]
)
demo.queue().launch(show_api=True, show_error=True, share = True)
|