Spaces:
Running
Running
Create gradio_app.py
Browse files- gradio_app.py +316 -0
gradio_app.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import tempfile
|
3 |
+
import gradio as gr
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import imageio
|
7 |
+
import argparse
|
8 |
+
from types import MethodType
|
9 |
+
import safetensors.torch as sf
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
13 |
+
from diffusers import MotionAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
|
14 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler
|
15 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
16 |
+
from torch.hub import download_url_to_file
|
17 |
+
|
18 |
+
from src.ic_light import BGSource
|
19 |
+
from src.animatediff_pipe import AnimateDiffVideoToVideoPipeline
|
20 |
+
from src.ic_light_pipe import StableDiffusionImg2ImgPipeline
|
21 |
+
from utils.tools import read_video,
|
22 |
+
|
23 |
+
from huggingface_hub import snapshot_download, hf_hub_download
|
24 |
+
|
25 |
+
huggingface_hub.hf_hub_download(
|
26 |
+
repo_id='lllyasviel/ic-light',
|
27 |
+
filename='iclight_sd15_fc.safetensors',
|
28 |
+
local_dir='./models'
|
29 |
+
)
|
30 |
+
|
31 |
+
snapshot_download(
|
32 |
+
repo_id="stablediffusionapi/realistic-vision-v51",
|
33 |
+
local_dir="./models/stablediffusionapi/realistic-vision-v51"
|
34 |
+
)
|
35 |
+
|
36 |
+
snapshot_download(
|
37 |
+
repo_id="guoyww/animatediff-motion-adapter-v1-5-3",
|
38 |
+
local_dir="./models/guoyww/animatediff-motion-adapter-v1-5-3"
|
39 |
+
)
|
40 |
+
|
41 |
+
def main(args):
|
42 |
+
|
43 |
+
config = OmegaConf.load(args.config)
|
44 |
+
device = torch.device('cuda')
|
45 |
+
adopted_dtype = torch.float16
|
46 |
+
set_all_seed(42)
|
47 |
+
|
48 |
+
## vdm model
|
49 |
+
adapter = MotionAdapter.from_pretrained(args.motion_adapter_model)
|
50 |
+
|
51 |
+
## pipeline
|
52 |
+
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(args.sd_model, motion_adapter=adapter)
|
53 |
+
eul_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
|
54 |
+
args.sd_model,
|
55 |
+
subfolder="scheduler",
|
56 |
+
beta_schedule="linear",
|
57 |
+
)
|
58 |
+
|
59 |
+
pipe.scheduler = eul_scheduler
|
60 |
+
pipe.enable_vae_slicing()
|
61 |
+
pipe = pipe.to(device=device, dtype=adopted_dtype)
|
62 |
+
pipe.vae.requires_grad_(False)
|
63 |
+
pipe.unet.requires_grad_(False)
|
64 |
+
|
65 |
+
## ic-light model
|
66 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.sd_model, subfolder="tokenizer")
|
67 |
+
text_encoder = CLIPTextModel.from_pretrained(args.sd_model, subfolder="text_encoder")
|
68 |
+
vae = AutoencoderKL.from_pretrained(args.sd_model, subfolder="vae")
|
69 |
+
unet = UNet2DConditionModel.from_pretrained(args.sd_model, subfolder="unet")
|
70 |
+
with torch.no_grad():
|
71 |
+
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
|
72 |
+
new_conv_in.weight.zero_() #torch.Size([320, 8, 3, 3])
|
73 |
+
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
|
74 |
+
new_conv_in.bias = unet.conv_in.bias
|
75 |
+
unet.conv_in = new_conv_in
|
76 |
+
unet_original_forward = unet.forward
|
77 |
+
|
78 |
+
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
|
79 |
+
|
80 |
+
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
|
81 |
+
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
|
82 |
+
new_sample = torch.cat([sample, c_concat], dim=1)
|
83 |
+
kwargs['cross_attention_kwargs'] = {}
|
84 |
+
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
|
85 |
+
unet.forward = hooked_unet_forward
|
86 |
+
|
87 |
+
## ic-light model loader
|
88 |
+
if not os.path.exists(args.ic_light_model):
|
89 |
+
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors',
|
90 |
+
dst=args.ic_light_model)
|
91 |
+
|
92 |
+
sd_offset = sf.load_file(args.ic_light_model)
|
93 |
+
sd_origin = unet.state_dict()
|
94 |
+
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
|
95 |
+
unet.load_state_dict(sd_merged, strict=True)
|
96 |
+
del sd_offset, sd_origin, sd_merged
|
97 |
+
text_encoder = text_encoder.to(device=device, dtype=adopted_dtype)
|
98 |
+
vae = vae.to(device=device, dtype=adopted_dtype)
|
99 |
+
unet = unet.to(device=device, dtype=adopted_dtype)
|
100 |
+
unet.set_attn_processor(AttnProcessor2_0())
|
101 |
+
vae.set_attn_processor(AttnProcessor2_0())
|
102 |
+
|
103 |
+
# Consistent light attention
|
104 |
+
@torch.inference_mode()
|
105 |
+
def custom_forward_CLA(self,
|
106 |
+
hidden_states,
|
107 |
+
gamma=config.get("gamma", 0.5),
|
108 |
+
encoder_hidden_states=None,
|
109 |
+
attention_mask=None,
|
110 |
+
cross_attention_kwargs=None
|
111 |
+
):
|
112 |
+
|
113 |
+
batch_size, sequence_length, channel = hidden_states.shape
|
114 |
+
|
115 |
+
residual = hidden_states
|
116 |
+
input_ndim = hidden_states.ndim
|
117 |
+
if input_ndim == 4:
|
118 |
+
batch_size, channel, height, width = hidden_states.shape
|
119 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
120 |
+
|
121 |
+
if attention_mask is not None:
|
122 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
123 |
+
target_length = query.shape[1]
|
124 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
125 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
126 |
+
if self.group_norm is not None:
|
127 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
128 |
+
if encoder_hidden_states is None:
|
129 |
+
encoder_hidden_states = hidden_states
|
130 |
+
|
131 |
+
query = self.to_q(hidden_states)
|
132 |
+
key = self.to_k(encoder_hidden_states)
|
133 |
+
value = self.to_v(encoder_hidden_states)
|
134 |
+
inner_dim = key.shape[-1]
|
135 |
+
head_dim = inner_dim // self.heads
|
136 |
+
query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
|
137 |
+
key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
|
138 |
+
value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
|
139 |
+
|
140 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
141 |
+
shape = query.shape
|
142 |
+
|
143 |
+
# addition key and value
|
144 |
+
mean_key = key.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
|
145 |
+
mean_value = value.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
|
146 |
+
mean_key = mean_key.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
|
147 |
+
mean_value = mean_value.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
|
148 |
+
add_hidden_state = F.scaled_dot_product_attention(query, mean_key, mean_value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
149 |
+
|
150 |
+
# mix
|
151 |
+
hidden_states = (1-gamma)*hidden_states + gamma*add_hidden_state
|
152 |
+
|
153 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
|
154 |
+
hidden_states = hidden_states.to(query.dtype)
|
155 |
+
hidden_states = self.to_out[0](hidden_states)
|
156 |
+
hidden_states = self.to_out[1](hidden_states)
|
157 |
+
|
158 |
+
if input_ndim == 4:
|
159 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
160 |
+
|
161 |
+
if self.residual_connection:
|
162 |
+
hidden_states = hidden_states + residual
|
163 |
+
|
164 |
+
hidden_states = hidden_states / self.rescale_output_factor
|
165 |
+
return hidden_states
|
166 |
+
|
167 |
+
### attention
|
168 |
+
@torch.inference_mode()
|
169 |
+
def prep_unet_self_attention(unet):
|
170 |
+
for name, module in unet.named_modules():
|
171 |
+
module_name = type(module).__name__
|
172 |
+
|
173 |
+
name_split_list = name.split(".")
|
174 |
+
cond_1 = name_split_list[0] in "up_blocks"
|
175 |
+
cond_2 = name_split_list[-1] in ('attn1')
|
176 |
+
|
177 |
+
if "Attention" in module_name and cond_1 and cond_2:
|
178 |
+
cond_3 = name_split_list[1]
|
179 |
+
if cond_3 not in "3":
|
180 |
+
module.forward = MethodType(custom_forward_CLA, module)
|
181 |
+
|
182 |
+
return unet
|
183 |
+
|
184 |
+
## consistency light attention
|
185 |
+
unet = prep_unet_self_attention(unet)
|
186 |
+
|
187 |
+
## ic-light-scheduler
|
188 |
+
ic_light_scheduler = DPMSolverMultistepScheduler(
|
189 |
+
num_train_timesteps=1000,
|
190 |
+
beta_start=0.00085,
|
191 |
+
beta_end=0.012,
|
192 |
+
algorithm_type="sde-dpmsolver++",
|
193 |
+
use_karras_sigmas=True,
|
194 |
+
steps_offset=1
|
195 |
+
)
|
196 |
+
ic_light_pipe = StableDiffusionImg2ImgPipeline(
|
197 |
+
vae=vae,
|
198 |
+
text_encoder=text_encoder,
|
199 |
+
tokenizer=tokenizer,
|
200 |
+
unet=unet,
|
201 |
+
scheduler=ic_light_scheduler,
|
202 |
+
safety_checker=None,
|
203 |
+
requires_safety_checker=False,
|
204 |
+
feature_extractor=None,
|
205 |
+
image_encoder=None
|
206 |
+
)
|
207 |
+
ic_light_pipe = ic_light_pipe.to(device)
|
208 |
+
|
209 |
+
############################# params ######################################
|
210 |
+
strength = config.get("strength", 0.5)
|
211 |
+
num_step = config.get("num_step", 25)
|
212 |
+
text_guide_scale = config.get("text_guide_scale", 2)
|
213 |
+
seed = config.get("seed")
|
214 |
+
image_width = config.get("width", 512)
|
215 |
+
image_height = config.get("height", 512)
|
216 |
+
n_prompt = config.get("n_prompt", "")
|
217 |
+
relight_prompt = config.get("relight_prompt", "")
|
218 |
+
video_path = config.get("video_path", "")
|
219 |
+
bg_source = BGSource[config.get("bg_source")]
|
220 |
+
save_path = config.get("save_path")
|
221 |
+
|
222 |
+
############################## infer #####################################
|
223 |
+
generator = torch.manual_seed(seed)
|
224 |
+
video_name = os.path.basename(video_path)
|
225 |
+
video_list, video_name = read_video(video_path, image_width, image_height)
|
226 |
+
|
227 |
+
print("################## begin ##################")
|
228 |
+
with torch.no_grad():
|
229 |
+
num_inference_steps = int(round(num_step / strength))
|
230 |
+
|
231 |
+
output = pipe(
|
232 |
+
ic_light_pipe=ic_light_pipe,
|
233 |
+
relight_prompt=relight_prompt,
|
234 |
+
bg_source=bg_source,
|
235 |
+
video=video_list,
|
236 |
+
prompt=relight_prompt,
|
237 |
+
strength=strength,
|
238 |
+
negative_prompt=n_prompt,
|
239 |
+
guidance_scale=text_guide_scale,
|
240 |
+
num_inference_steps=num_inference_steps,
|
241 |
+
height=image_height,
|
242 |
+
width=image_width,
|
243 |
+
generator=generator,
|
244 |
+
)
|
245 |
+
|
246 |
+
frames = output.frames[0]
|
247 |
+
results_path = f"{save_path}/relight_{video_name}"
|
248 |
+
imageio.mimwrite(results_path, frames, fps=8)
|
249 |
+
print(f"relight with bg generation! prompt:{relight_prompt}, light:{bg_source.value}, save in {results_path}.")
|
250 |
+
|
251 |
+
def infer(n_prompt, relight_prompt, video_path, bg_source, save_path,
|
252 |
+
width, height, strength, gamma, num_step, text_guide_scale, seed):
|
253 |
+
|
254 |
+
config_data = {
|
255 |
+
"n_prompt": n_prompt,
|
256 |
+
"relight_prompt": relight_prompt,
|
257 |
+
"video_path": video_path,
|
258 |
+
"bg_source": bg_source,
|
259 |
+
"save_path": save_path,
|
260 |
+
"width": width,
|
261 |
+
"height": height,
|
262 |
+
"strength": strength,
|
263 |
+
"gamma": gamma,
|
264 |
+
"num_step": num_step,
|
265 |
+
"text_guide_scale": text_guide_scale,
|
266 |
+
"seed": seed
|
267 |
+
}
|
268 |
+
|
269 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml")
|
270 |
+
with open(temp_file.name, 'w') as file:
|
271 |
+
yaml.dump(config_data, file, default_flow_style=False)
|
272 |
+
|
273 |
+
config_path = temp_file.name
|
274 |
+
|
275 |
+
class Args:
|
276 |
+
def __init__(self):
|
277 |
+
self.sd_model = "./models/stablediffusionapi/realistic-vision-v51"
|
278 |
+
self.motion_adapter_model = "./models/guoyww/animatediff-motion-adapter-v1-5-3"
|
279 |
+
self.ic_light_model = "./models/iclight_sd15_fc.safetensors"
|
280 |
+
self.config = config_path
|
281 |
+
|
282 |
+
args = Args()
|
283 |
+
main(args)
|
284 |
+
|
285 |
+
video_name = os.path.basename(video_path)
|
286 |
+
results_path = f"{save_path}/relight_{video_name}"
|
287 |
+
os.remove(config_path)
|
288 |
+
|
289 |
+
return results_path
|
290 |
+
|
291 |
+
with gr.Blocks() as demo:
|
292 |
+
with gr.Row():
|
293 |
+
n_prompt = gr.Textbox(label="Negative Prompt")
|
294 |
+
relight_prompt = gr.Textbox(label="Relight Prompt")
|
295 |
+
with gr.Row():
|
296 |
+
video_path = gr.Textbox(label="Video Path")
|
297 |
+
bg_source = gr.Dropdown(["NONE", "LEFT", "RIGHT", "BOTTOM", "TOP"], label="Background Source")
|
298 |
+
with gr.Row():
|
299 |
+
save_path = gr.Textbox(label="Save Path")
|
300 |
+
width = gr.Number(label="Width", value=512)
|
301 |
+
height = gr.Number(label="Height", value=512)
|
302 |
+
with gr.Row():
|
303 |
+
strength = gr.Slider(minimum=0.0, maximum=1.0, label="Strength", value=0.5)
|
304 |
+
gamma = gr.Slider(minimum=0.0, maximum=1.0, label="Gamma", value=0.5)
|
305 |
+
with gr.Row():
|
306 |
+
num_step = gr.Number(label="Number of Steps", value=25)
|
307 |
+
text_guide_scale = gr.Number(label="Text Guide Scale", value=2)
|
308 |
+
seed = gr.Number(label="Seed", value=2060)
|
309 |
+
|
310 |
+
output = gr.Textbox(label="Results Path")
|
311 |
+
submit = gr.Button("Run")
|
312 |
+
submit.click(infer, inputs=[n_prompt, relight_prompt, video_path, bg_source, save_path,
|
313 |
+
width, height, strength, gamma, num_step, text_guide_scale, seed],
|
314 |
+
outputs=output)
|
315 |
+
|
316 |
+
demo.launch()
|