File size: 846 Bytes
7aa2125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import pandas as pd
import joblib

# Load the trained model
model = joblib.load("model.pkl")  # Ensure your model is saved as 'model.pkl'

app = FastAPI()

# Add CORS middleware to allow requests from any origin
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Allow all origins (adjust if needed)
    allow_credentials=True,
    allow_methods=["*"],  # Allow all methods (GET, POST, etc.)
    allow_headers=["*"],  # Allow all headers
)

@app.post("/predict")
async def predict(features: dict):
    # Convert the input into a DataFrame
    input_data = pd.DataFrame([features])
    
    # Make prediction using the trained model
    prediction = model.predict(input_data)
    
    return {"is_potentially_hazardous_asteroid": int(prediction[0])}