Spaces:
Sleeping
Sleeping
Sushan
commited on
Commit
·
7aa2125
1
Parent(s):
5893f86
Model deployed
Browse files- Dockerfile +17 -0
- app.py +29 -0
- model.pkl +3 -0
- requirements.txt +5 -0
- test.py +19 -0
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the current directory contents into the container
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
# Install the required packages from requirements.txt
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Expose port 8000 for the FastAPI app
|
14 |
+
EXPOSE 8000
|
15 |
+
|
16 |
+
# Command to run the FastAPI app with Uvicorn
|
17 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
|
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
|
6 |
+
# Load the trained model
|
7 |
+
model = joblib.load("model.pkl") # Ensure your model is saved as 'model.pkl'
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Add CORS middleware to allow requests from any origin
|
12 |
+
app.add_middleware(
|
13 |
+
CORSMiddleware,
|
14 |
+
allow_origins=["*"], # Allow all origins (adjust if needed)
|
15 |
+
allow_credentials=True,
|
16 |
+
allow_methods=["*"], # Allow all methods (GET, POST, etc.)
|
17 |
+
allow_headers=["*"], # Allow all headers
|
18 |
+
)
|
19 |
+
|
20 |
+
@app.post("/predict")
|
21 |
+
async def predict(features: dict):
|
22 |
+
# Convert the input into a DataFrame
|
23 |
+
input_data = pd.DataFrame([features])
|
24 |
+
|
25 |
+
# Make prediction using the trained model
|
26 |
+
prediction = model.predict(input_data)
|
27 |
+
|
28 |
+
return {"is_potentially_hazardous_asteroid": int(prediction[0])}
|
29 |
+
|
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21c23c7f17c0d72b85d0b416e14f01a70ee56833197740ee5ce168819b15148f
|
3 |
+
size 3870
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
pandas
|
4 |
+
scikit-learn
|
5 |
+
joblib
|
test.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
# URL of the deployed API (replace with your actual space URL)
|
4 |
+
url = "https://<your-space-name>.hf.space/predict"
|
5 |
+
|
6 |
+
# Sample input data
|
7 |
+
data = {
|
8 |
+
"absolute_magnitude_h": 22.1,
|
9 |
+
"estimated_diameter_min_km": 0.127,
|
10 |
+
"estimated_diameter_max_km": 0.285,
|
11 |
+
"relative_velocity_km_per_sec": 5.67,
|
12 |
+
"miss_distance_km": 386000.0
|
13 |
+
}
|
14 |
+
|
15 |
+
# Make a request to the API
|
16 |
+
response = requests.post(url, json=data)
|
17 |
+
|
18 |
+
# Display the prediction result
|
19 |
+
print(response.json())
|