yolov12 / README.md
sunsmarterjieleaf's picture
Upload 315 files
1999a98 verified
|
raw
history blame
5.54 kB
<div align="center">
<h1>YOLOv12</h1>
<h3>YOLOv12: Attention-Centric Real-Time Object Detectors</h3>
[Yunjie Tian](https://sunsmarterjie.github.io/)<sup>1</sup>, [Qixiang Ye](https://people.ucas.ac.cn/~qxye?language=en)<sup>2</sup>, [David Doermann](https://cse.buffalo.edu/~doermann/)<sup>1</sup>
<sup>1</sup> University at Buffalo, SUNY, <sup>2</sup> University of Chinese Academy of Sciences.
<p align="center">
<img src="assets/tradeoff.svg" width=90%> <br>
Comparison with popular methods in terms of latency-accuracy (left) and FLOPs-accuracy (right) trade-offs
</p>
</div>
[![arXiv](https://img.shields.io/badge/arXiv-2502.12524-b31b1b.svg)](https://arxiv.org/abs/2502.12524)
## Updates
- 2025/02/19: [arXiv version](https://arxiv.org/abs/2502.12524) is public.
<details>
<summary>
<font size="+1">Abstract</font>
</summary>
Enhancing the network architecture of the YOLO framework has been crucial for a long time but has focused on CNN-based improvements despite the proven superiority of attention mechanisms in modeling capabilities. This is because attention-based models cannot match the speed of CNN-based models. This paper proposes an attention-centric YOLO framework, namely YOLOv12, that matches the speed of previous CNN-based ones while harnessing the performance benefits of attention mechanisms.
YOLOv12 surpasses all popular real-time object detectors in accuracy with competitive speed. For example, YOLOv12-N achieves 40.6% mAP with an inference latency of 1.64 ms on a T4 GPU, outperforming advanced YOLOv10-N / YOLOv11-N by 2.1%/1.2% mAP with a comparable speed. This advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-time detectors that improve DETR, such as RT-DETR / RT-DETRv2: YOLOv12-S beats RT-DETR-R18 / RT-DETRv2-R18 while running 42% faster, using only 36% of the computation and 45% of the parameters.
</details>
## Main Results
COCO
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>T4 TensorRT10<br> | params<br><sup>(M) | FLOPs<br><sup>(G) |
| :----------------------------------------------------------------------------------- | :-------------------: | :-------------------:| :------------------------------:| :-----------------:| :---------------:|
| [YOLO12n](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12n.pt) | 640 | 40.6 | 1.64 | 2.6 | 6.5 |
| [YOLO12s](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12s.pt) | 640 | 48.0 | 2.61 | 9.3 | 21.4 |
| [YOLO12m](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12m.pt) | 640 | 52.5 | 4.86 | 20.2 | 67.5 |
| [YOLO12l](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12l.pt) | 640 | 53.7 | 6.77 | 26.4 | 88.9 |
| [YOLO12x](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12x.pt) | 640 | 55.2 | 11.79 | 59.1 | 199.0 |
## Installation
```
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
conda create -n yolov12 python=3.11
conda activate yolov12
pip install -r requirements.txt
pip install -e .
```
## Validation
[`yolov12n`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12n.pt)
[`yolov12s`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12s.pt)
[`yolov12m`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12m.pt)
[`yolov12l`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12l.pt)
[`yolov12x`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12x.pt)
```python
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}.pt')
model.val(data='coco.yaml', save_json=True)
```
## Training
```python
from ultralytics import YOLO
model = YOLO('yolov12n.yaml')
# Train the model
results = model.train(
data='coco.yaml',
epochs=600,
batch=256,
imgsz=640,
scale=0.5, # S:0.9; M:0.9; L:0.9; X:0.9
mosaic=1.0,
mixup=0.0, # S:0.05; M:0.15; L:0.15; X:0.2
copy_paste=0.1, # S:0.15; M:0.4; L:0.5; X:0.6
device="0,1,2,3",
)
# Evaluate model performance on the validation set
metrics = model.val()
# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()
```
## Prediction
```python
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}.pt')
model.predict()
```
## Export
```python
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}.pt')
model.export(format="engine", half=True) # or format="onnx"
```
## Demo
```
python app.py
# Please visit http://127.0.0.1:7860
```
## Acknowledgement
The code is based on [ultralytics](https://github.com/ultralytics/ultralytics). Thanks for their excellent work!
## Citation
```BibTeX
@article{tian2025yolov12,
title={YOLOv12: Attention-Centric Real-Time Object Detectors},
author={Tian, Yunjie and Ye, Qixiang and Doermann, David},
journal={arXiv preprint arXiv:2502.12524},
year={2025}
}
```