Spaces:
Running
Running
<div align="center"> | |
<h1>YOLOv12</h1> | |
<h3>YOLOv12: Attention-Centric Real-Time Object Detectors</h3> | |
[Yunjie Tian](https://sunsmarterjie.github.io/)<sup>1</sup>, [Qixiang Ye](https://people.ucas.ac.cn/~qxye?language=en)<sup>2</sup>, [David Doermann](https://cse.buffalo.edu/~doermann/)<sup>1</sup> | |
<sup>1</sup> University at Buffalo, SUNY, <sup>2</sup> University of Chinese Academy of Sciences. | |
<p align="center"> | |
<img src="assets/tradeoff.svg" width=90%> <br> | |
Comparison with popular methods in terms of latency-accuracy (left) and FLOPs-accuracy (right) trade-offs | |
</p> | |
</div> | |
[](https://arxiv.org/abs/2502.12524) | |
## Updates | |
- 2025/02/19: [arXiv version](https://arxiv.org/abs/2502.12524) is public. | |
<details> | |
<summary> | |
<font size="+1">Abstract</font> | |
</summary> | |
Enhancing the network architecture of the YOLO framework has been crucial for a long time but has focused on CNN-based improvements despite the proven superiority of attention mechanisms in modeling capabilities. This is because attention-based models cannot match the speed of CNN-based models. This paper proposes an attention-centric YOLO framework, namely YOLOv12, that matches the speed of previous CNN-based ones while harnessing the performance benefits of attention mechanisms. | |
YOLOv12 surpasses all popular real-time object detectors in accuracy with competitive speed. For example, YOLOv12-N achieves 40.6% mAP with an inference latency of 1.64 ms on a T4 GPU, outperforming advanced YOLOv10-N / YOLOv11-N by 2.1%/1.2% mAP with a comparable speed. This advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-time detectors that improve DETR, such as RT-DETR / RT-DETRv2: YOLOv12-S beats RT-DETR-R18 / RT-DETRv2-R18 while running 42% faster, using only 36% of the computation and 45% of the parameters. | |
</details> | |
## Main Results | |
COCO | |
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>T4 TensorRT10<br> | params<br><sup>(M) | FLOPs<br><sup>(G) | | |
| :----------------------------------------------------------------------------------- | :-------------------: | :-------------------:| :------------------------------:| :-----------------:| :---------------:| | |
| [YOLO12n](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12n.pt) | 640 | 40.6 | 1.64 | 2.6 | 6.5 | | |
| [YOLO12s](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12s.pt) | 640 | 48.0 | 2.61 | 9.3 | 21.4 | | |
| [YOLO12m](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12m.pt) | 640 | 52.5 | 4.86 | 20.2 | 67.5 | | |
| [YOLO12l](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12l.pt) | 640 | 53.7 | 6.77 | 26.4 | 88.9 | | |
| [YOLO12x](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12x.pt) | 640 | 55.2 | 11.79 | 59.1 | 199.0 | | |
## Installation | |
``` | |
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl | |
conda create -n yolov12 python=3.11 | |
conda activate yolov12 | |
pip install -r requirements.txt | |
pip install -e . | |
``` | |
## Validation | |
[`yolov12n`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12n.pt) | |
[`yolov12s`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12s.pt) | |
[`yolov12m`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12m.pt) | |
[`yolov12l`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12l.pt) | |
[`yolov12x`](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12x.pt) | |
```python | |
from ultralytics import YOLO | |
model = YOLO('yolov12{n/s/m/l/x}.pt') | |
model.val(data='coco.yaml', save_json=True) | |
``` | |
## Training | |
```python | |
from ultralytics import YOLO | |
model = YOLO('yolov12n.yaml') | |
# Train the model | |
results = model.train( | |
data='coco.yaml', | |
epochs=600, | |
batch=256, | |
imgsz=640, | |
scale=0.5, # S:0.9; M:0.9; L:0.9; X:0.9 | |
mosaic=1.0, | |
mixup=0.0, # S:0.05; M:0.15; L:0.15; X:0.2 | |
copy_paste=0.1, # S:0.15; M:0.4; L:0.5; X:0.6 | |
device="0,1,2,3", | |
) | |
# Evaluate model performance on the validation set | |
metrics = model.val() | |
# Perform object detection on an image | |
results = model("path/to/image.jpg") | |
results[0].show() | |
``` | |
## Prediction | |
```python | |
from ultralytics import YOLO | |
model = YOLO('yolov12{n/s/m/l/x}.pt') | |
model.predict() | |
``` | |
## Export | |
```python | |
from ultralytics import YOLO | |
model = YOLO('yolov12{n/s/m/l/x}.pt') | |
model.export(format="engine", half=True) # or format="onnx" | |
``` | |
## Demo | |
``` | |
python app.py | |
# Please visit http://127.0.0.1:7860 | |
``` | |
## Acknowledgement | |
The code is based on [ultralytics](https://github.com/ultralytics/ultralytics). Thanks for their excellent work! | |
## Citation | |
```BibTeX | |
@article{tian2025yolov12, | |
title={YOLOv12: Attention-Centric Real-Time Object Detectors}, | |
author={Tian, Yunjie and Ye, Qixiang and Doermann, David}, | |
journal={arXiv preprint arXiv:2502.12524}, | |
year={2025} | |
} | |
``` | |