File size: 6,237 Bytes
16fea32 771bde2 394f072 16fea32 581c890 7c25703 581c890 fd9f2ca 581c890 5818248 581c890 394f072 16fea32 394f072 4f2457b 5818248 394f072 beaa004 771bde2 5818248 771bde2 4f2457b 7c25703 581c890 beaa004 4f2457b beaa004 394f072 beaa004 394f072 beaa004 394f072 beaa004 394f072 581c890 6d7f3ae 4f2457b beaa004 771bde2 fd9f2ca beaa004 4f2457b 394f072 4f2457b beaa004 8d76def 4f2457b 771bde2 581c890 beaa004 581c890 4f2457b debd5cf ac35f3e 4f2457b 394f072 4f2457b debd5cf 4f2457b beaa004 394f072 ac35f3e 1fdd050 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import re
import random
import logging
import os
import jwt
from typing import Dict, Any
import autopep8
import textwrap
from datasets import load_dataset
import random
import asyncio
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load the dataset (you might want to do this once at the start of your script)
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
train_dataset = dataset["train"]
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# JWT settings
JWT_SECRET = os.environ.get("JWT_SECRET")
if not JWT_SECRET:
raise ValueError("JWT_SECRET environment variable is not set")
JWT_ALGORITHM = "HS256"
# Model settings
MODEL_NAME = "leetmonkey_peft__q8_0.gguf"
REPO_ID = "sugiv/leetmonkey-peft-gguf"
# Load the model
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_NAME, cache_dir="./models")
llm = Llama(model_path=model_path, n_ctx=1024, n_threads=8, n_gpu_layers=-1, verbose=False, mlock=True)
logger.info("8-bit model loaded successfully")
user_data = {}
# Generation parameters
generation_kwargs = {
"max_tokens": 512,
"stop": ["```", "### Instruction:", "### Response:"],
"echo": False,
"temperature": 0.05,
"top_k": 10,
"top_p": 0.9,
"repeat_penalty": 1.1
}
def verify_token(token: str) -> bool:
try:
jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM])
return True
except jwt.PyJWTError:
return False
def extract_and_format_code(text):
# Extract code between triple backticks
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
if code_match:
code = code_match.group(1)
else:
code = text
# Dedent the code to remove any common leading whitespace
code = textwrap.dedent(code)
# Split the code into lines
lines = code.split('\n')
# Ensure proper indentation
indented_lines = []
for line in lines:
if line.strip().startswith('class') or line.strip().startswith('def'):
indented_lines.append(line) # Keep class and function definitions as is
elif line.strip(): # If the line is not empty
indented_lines.append(' ' + line) # Add 4 spaces of indentation
else:
indented_lines.append(line) # Keep empty lines as is
formatted_code = '\n'.join(indented_lines)
try:
return autopep8.fix_code(formatted_code)
except:
return formatted_code
def generate_explanation(problem: str, solution: str, token: str) -> Dict[str, Any]:
if not verify_token(token):
return {"error": "Invalid token"}
system_prompt = "You are a Python coding assistant specialized in explaining LeetCode problem solutions. Provide a clear and concise explanation of the given solution."
full_prompt = f"""### Instruction:
{system_prompt}
Problem:
{problem}
Solution:
{solution}
Explain this solution step by step.
### Response:
Here's the explanation of the solution:
"""
generated_text = ""
for chunk in llm(full_prompt, stream=True, **generation_kwargs):
generated_text += chunk["choices"][0]["text"]
return {"explanation": generated_text}
def generate_solution(instruction: str, token: str) -> Dict[str, Any]:
if not verify_token(token):
return {"error": "Invalid token"}
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
full_prompt = f"""### Instruction:
{system_prompt}
Implement the following function for the LeetCode problem:
{instruction}
### Response:
Here's the complete Python function implementation:
```python
"""
generated_text = ""
for chunk in llm(full_prompt, stream=True, **generation_kwargs):
generated_text += chunk["choices"][0]["text"]
formatted_code = extract_and_format_code(generated_text)
user_data[token] = {"problem": instruction, "solution": formatted_code}
return {"solution": formatted_code}
def random_problem(token: str) -> Dict[str, Any]:
if not verify_token(token):
return {"error": "Invalid token"}
# Select a random problem from the dataset
random_item = random.choice(train_dataset)
# Extract the instruction (problem statement) from the randomly selected item
problem = random_item['instruction']
user_data[token] = {"problem": problem, "solution": None}
return {"problem": problem}
def explain_solution(token: str) -> Dict[str, Any]:
if not verify_token(token):
return {"error": "Invalid token"}
if token not in user_data or not user_data[token].get("solution"):
return {"error": "No solution available to explain. Please generate a solution first."}
problem = user_data[token]["problem"]
solution = user_data[token]["solution"]
return generate_explanation(problem, solution, token)
# Create Gradio interfaces
generate_interface = gr.Interface(
fn=generate_solution,
inputs=[gr.Textbox(label="Problem Instruction"), gr.Textbox(label="JWT Token")],
outputs=gr.JSON(),
title="Generate Solution API",
description="Provide a LeetCode problem instruction and a valid JWT token to generate a solution."
)
random_problem_interface = gr.Interface(
fn=random_problem,
inputs=gr.Textbox(label="JWT Token"),
outputs=gr.JSON(),
title="Random Problem API",
description="Provide a valid JWT token to get a random LeetCode problem."
)
explain_interface = gr.Interface(
fn=explain_solution,
inputs=gr.Textbox(label="JWT Token"),
outputs=gr.JSON(),
title="Explain Solution API",
description="Provide a valid JWT token to get an explanation of the last generated solution."
)
demo = gr.TabbedInterface(
[generate_interface, explain_interface, random_problem_interface],
["Generate Solution", "Explain Solution", "Random Problem"]
)
# Launch the Gradio app
demo.launch() |