File size: 6,237 Bytes
16fea32
 
 
771bde2
 
 
 
394f072
16fea32
581c890
7c25703
581c890
 
 
fd9f2ca
581c890
5818248
 
 
 
581c890
 
 
394f072
 
 
 
 
 
16fea32
 
 
394f072
 
 
 
 
 
4f2457b
 
5818248
394f072
 
beaa004
 
771bde2
 
 
 
 
 
 
 
5818248
771bde2
 
4f2457b
 
 
 
 
 
7c25703
581c890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beaa004
 
4f2457b
 
 
beaa004
394f072
 
 
beaa004
 
394f072
beaa004
 
 
 
394f072
 
beaa004
394f072
 
 
581c890
 
6d7f3ae
4f2457b
beaa004
771bde2
fd9f2ca
beaa004
 
 
 
4f2457b
 
 
394f072
4f2457b
 
 
 
 
 
 
 
 
beaa004
 
 
 
 
 
 
 
8d76def
4f2457b
771bde2
 
 
581c890
 
 
 
 
beaa004
581c890
 
4f2457b
debd5cf
 
 
 
 
 
 
 
 
 
 
 
ac35f3e
4f2457b
 
 
 
 
 
 
394f072
4f2457b
 
 
 
 
 
 
 
debd5cf
 
 
 
 
 
 
 
4f2457b
beaa004
 
394f072
 
ac35f3e
1fdd050
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import re
import random
import logging
import os
import jwt
from typing import Dict, Any
import autopep8
import textwrap

from datasets import load_dataset
import random
import asyncio

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load the dataset (you might want to do this once at the start of your script)
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
train_dataset = dataset["train"]

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# JWT settings
JWT_SECRET = os.environ.get("JWT_SECRET")
if not JWT_SECRET:
    raise ValueError("JWT_SECRET environment variable is not set")
JWT_ALGORITHM = "HS256"

# Model settings
MODEL_NAME = "leetmonkey_peft__q8_0.gguf"
REPO_ID = "sugiv/leetmonkey-peft-gguf"

# Load the model
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_NAME, cache_dir="./models")
llm = Llama(model_path=model_path, n_ctx=1024, n_threads=8, n_gpu_layers=-1, verbose=False, mlock=True)
logger.info("8-bit model loaded successfully")

user_data = {}

# Generation parameters
generation_kwargs = {
    "max_tokens": 512,
    "stop": ["```", "### Instruction:", "### Response:"],
    "echo": False,
    "temperature": 0.05,
    "top_k": 10,
    "top_p": 0.9,
    "repeat_penalty": 1.1
}

def verify_token(token: str) -> bool:
    try:
        jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM])
        return True
    except jwt.PyJWTError:
        return False

def extract_and_format_code(text):
    # Extract code between triple backticks
    code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
    if code_match:
        code = code_match.group(1)
    else:
        code = text

    # Dedent the code to remove any common leading whitespace
    code = textwrap.dedent(code)

    # Split the code into lines
    lines = code.split('\n')

    # Ensure proper indentation
    indented_lines = []
    for line in lines:
        if line.strip().startswith('class') or line.strip().startswith('def'):
            indented_lines.append(line)  # Keep class and function definitions as is
        elif line.strip():  # If the line is not empty
            indented_lines.append('    ' + line)  # Add 4 spaces of indentation
        else:
            indented_lines.append(line)  # Keep empty lines as is

    formatted_code = '\n'.join(indented_lines)

    try:
        return autopep8.fix_code(formatted_code)
    except:
        return formatted_code
    
def generate_explanation(problem: str, solution: str, token: str) -> Dict[str, Any]:
    if not verify_token(token):
        return {"error": "Invalid token"}
    
    system_prompt = "You are a Python coding assistant specialized in explaining LeetCode problem solutions. Provide a clear and concise explanation of the given solution."
    full_prompt = f"""### Instruction:
{system_prompt}

Problem:
{problem}

Solution:
{solution}

Explain this solution step by step.

### Response:
Here's the explanation of the solution:

"""
    
    generated_text = ""
    for chunk in llm(full_prompt, stream=True, **generation_kwargs):
        generated_text += chunk["choices"][0]["text"]
    
    return {"explanation": generated_text}


def generate_solution(instruction: str, token: str) -> Dict[str, Any]:
    if not verify_token(token):
        return {"error": "Invalid token"}
    
    system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
    full_prompt = f"""### Instruction:
{system_prompt}

Implement the following function for the LeetCode problem:

{instruction}

### Response:
Here's the complete Python function implementation:

```python
"""
    
    generated_text = ""
    for chunk in llm(full_prompt, stream=True, **generation_kwargs):
        generated_text += chunk["choices"][0]["text"]
    
    formatted_code = extract_and_format_code(generated_text)
    user_data[token] = {"problem": instruction, "solution": formatted_code}
    return {"solution": formatted_code}

def random_problem(token: str) -> Dict[str, Any]:
    if not verify_token(token):
        return {"error": "Invalid token"}
    
    # Select a random problem from the dataset
    random_item = random.choice(train_dataset)
    
    # Extract the instruction (problem statement) from the randomly selected item
    problem = random_item['instruction']
    user_data[token] = {"problem": problem, "solution": None}
    
    return {"problem": problem}

def explain_solution(token: str) -> Dict[str, Any]:
    if not verify_token(token):
        return {"error": "Invalid token"}
    
    if token not in user_data or not user_data[token].get("solution"):
        return {"error": "No solution available to explain. Please generate a solution first."}
    
    problem = user_data[token]["problem"]
    solution = user_data[token]["solution"]
    
    return generate_explanation(problem, solution, token)

# Create Gradio interfaces
generate_interface = gr.Interface(
    fn=generate_solution,
    inputs=[gr.Textbox(label="Problem Instruction"), gr.Textbox(label="JWT Token")],
    outputs=gr.JSON(),
    title="Generate Solution API",
    description="Provide a LeetCode problem instruction and a valid JWT token to generate a solution."
)

random_problem_interface = gr.Interface(
    fn=random_problem,
    inputs=gr.Textbox(label="JWT Token"),
    outputs=gr.JSON(),
    title="Random Problem API",
    description="Provide a valid JWT token to get a random LeetCode problem."
)

explain_interface = gr.Interface(
    fn=explain_solution,
    inputs=gr.Textbox(label="JWT Token"),
    outputs=gr.JSON(),
    title="Explain Solution API",
    description="Provide a valid JWT token to get an explanation of the last generated solution."
)

demo = gr.TabbedInterface(
    [generate_interface, explain_interface, random_problem_interface],
    ["Generate Solution", "Explain Solution", "Random Problem"]
)

# Launch the Gradio app
demo.launch()